The Unique MST
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 24201   Accepted: 8596

Description

Given a connected undirected graph, tell if its minimum spanning tree is unique.

Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties: 
1. V' = V. 
2. T is connected and acyclic.

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'. 

Input

The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

Output

For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

Sample Input

2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2

Sample Output

3
Not Unique!
题意:判断是否存在唯一的最小生成树。
思路:先求出一个最小生成树。在这颗树上先加入(x,y),加入后一定会成环,如果删除(x,y)以外最大的一条边,会得到加入(x,y)时权值最小的一棵树。如果加入的边和删除的边相等,则最小生成不是唯一的。
收获:了解了次小生成树。
#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <algorithm>
#include <ctime>
#include <cmath>
#include <string>
#include <cstring>
#include <stack>
#include <queue>
#include <list>
#include <vector>
#include <map>
#include <set>
using namespace std; const int INF=0x3f3f3f3f;
const double eps=1e-;
const double PI=acos(-1.0);
#define maxn 500
int n, m;
int a[maxn][maxn];
int used[maxn][maxn];
int mmax[maxn][maxn];
int vis[maxn];
int dis[maxn];
int pre[maxn];
int prim()
{
int ans = ;
memset(vis, , sizeof vis);
memset(used, , sizeof used);
memset(mmax, ,sizeof mmax);
for(int i = ; i <= n; i++)
{
dis[i] = a[][i];
pre[i] = ;
}
vis[] = ;
dis[] = ;
for(int i = ; i < n; i++)
{
int temp = INF;
int k = -;
for(int j = ; j <= n; j++)
{
if(!vis[j] && temp > dis[j])
{
temp = dis[j];
k = j;
}
}
if(k == -) return ans;
ans += temp;
vis[k] = ;
used[k][pre[k]] = used[pre[k]][k] = ;
mmax[pre[k]][k] = temp;
for(int j = ; j <= n; j++)
mmax[j][k] = max(mmax[j][pre[k]],mmax[pre[k]][k] );//找最大的边权的边。
for(int j = ; j <= n; j++)
{
if(!vis[j] && dis[j] > a[k][j])
{
dis[j] = a[k][j];
pre[j] = k;
}
}
}
return ans;
}
int main()
{
int t;
scanf("%d", &t);
while(t--)
{
scanf("%d%d", &n, &m);
int u, v, w;
memset(a, INF, sizeof a);
for(int i = ; i < m; i++)
{
scanf("%d%d%d", &u, &v, &w);
a[u][v] = a[v][u] = w;
}
int mst = prim();
int flag = ;
for(int i = ; i <= n; i++)
for(int j = i+; j <= n; j++)
{
if(a[i][j] == INF || used[i][j] == )
continue;
if(a[i][j] == mmax[i][j])//判断加入的边和删除的边是否相等。
{
flag = ;
break;
}
}
if(flag)
printf("Not Unique!\n");
else
printf("%d\n",mst);
}
return ;
}

POJ1679(次小生成树)的更多相关文章

  1. poj1679次小生成树入门题

    次小生成树求法:例如求最小生成树用到了 1.2.4这三条边,总共5条边,那循环3次的时候,每次分别不用1.2.4求得最小生成树的MST,最小的MST即为次小生成树 如下代码maxx即求最小生成树时求得 ...

  2. poj1679 次小生成树

    prim方法:先求过一遍prim,同时标记使用过得边.然后同时记录任意2点间的最大值. 每次加入一条新的边,会产生环,删去环中的最大值即可. #include<stdio.h> #incl ...

  3. POJ1679 The Unique MST[次小生成树]

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28673   Accepted: 10239 ...

  4. 次小生成树(POJ1679/CDOJ1959)

    POJ1679 首先求出最小生成树,记录权值之和为MinST.然后枚举添加边(u,v),加上后必形成一个环,找到环上非(u,v)边的权值最大的边,把它删除,计算当前生成树的权值之和,取所有枚举加边后生 ...

  5. POJ1679(次小生成树)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 36692   Accepted: 13368 ...

  6. POJ1679 The Unique MST【次小生成树】

    题意: 判断最小生成树是否唯一. 思路: 首先求出最小生成树,记录现在这个最小生成树上所有的边,然后通过取消其中一条边,找到这两点上其他的边形成一棵新的生成树,求其权值,通过枚举所有可能,通过这些权值 ...

  7. POJ1679 The Unique MST 【次小生成树】

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 20421   Accepted: 7183 D ...

  8. 次小生成树(poj1679)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 20737   Accepted: 7281 D ...

  9. POJ1679 The Unique MST —— 次小生成树

    题目链接:http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total S ...

随机推荐

  1. UVa 11401 三角形的个数

    题意:由1,2,3...n组成的序列中找三个数,且以这三个数为变长能组成三角形,求这样的三角形个数. 思路:当每次输入n时重新都计算一遍会TLE...先预处理,将结果存入ans数组. 代码: #inc ...

  2. 关于C++中覆盖,重载,隐藏的一点说明

    C++覆盖 重载 隐藏是三个经常容易混淆的概念 这里我们简单总结下: 1.重载的条件(编译时多态) a.同一个类中 b.函数名相同,参数不同(返回值不能作为重载的条件) c.与函数是否为虚函数无关 2 ...

  3. 2016"百度之星" - 资格赛(Astar Round1) 1004

    思路:题目很简单,直接用map记录每个字符串的个数就可以了.记得对每个字符串先sort(). AC代码: #include <cstdio> #include <stdlib.h&g ...

  4. errno的基本用法

    error是一个包含在 perror()和strerrot()函数可以把errno的值转化为有意义的字符输出. #include <stdio.h> #include <stdlib ...

  5. android滑动基础篇 - 触屏显示信息

    效果图: 代码部分: activity类代码: package com.TouchView; /* * android滑动基础篇 * */ import android.app.Activity; i ...

  6. Android使用bindService启动服务

    1.Service package com.example.ebobo; import java.util.Timer; import java.util.TimerTask; import andr ...

  7. hdu 5335 Walk Out(bfs+寻找路径)

    Problem Description In an n∗m maze, the right-bottom corner or a written on it. An explorer gets los ...

  8. 动态规划之最长公共子序列LCS(Longest Common Subsequence)

    一.问题描述 由于最长公共子序列LCS是一个比较经典的问题,主要是采用动态规划(DP)算法去实现,理论方面的讲述也非常详尽,本文重点是程序的实现部分,所以理论方面的解释主要看这篇博客:http://b ...

  9. JSP九大内置对象和四种属性范围解读

    林炳文Evankaka原创作品.转载请注明出处http://blog.csdn.net/evankaka 摘要:本文首先主要解说了JSP中四种属性范围的概念.用法与实例. 然后在这个基础之上又引入了九 ...

  10. [HeadFirst-HTMLCSS学习笔记][第十二章HTML5标记]

    考虑HTML结构 HTML5即是把原来<div>换成一些更特定的元素.能够更明确指示包含什么内容. (页眉,导航,页脚,文章) article nav 导航 header footer t ...