
略恶心的线段树...不过只要弄清楚了AC应该不难....
----------------------------------------------------------------
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#define rep( i , n ) for( int i = 0 ; i < n ; i++ )
#define clr( x , c ) memset( x , c , sizeof( x ) )
#define L( x ) ( ( x ) << 1 )
#define R( x ) ( L( x ) ^ 1 )
#define LC L( x ) , l , m
#define RC R( x ) , m + 1 , r
#define X x , l , r
#define XX int x , int l , int r
#define M( l , r ) ( ( l + r ) >> 1 )
#define Rep( i , n ) for( int i = 1 ; i <= n ; ++i )
using namespace std;
const int maxn = 100000 + 5;
const int maxnode = 270000;
int n , seq[ maxn ];
struct Node {
int sum , l_cnt[ 2 ] , r_cnt[ 2 ] , cnt[ 2 ] , set;
bool rev;
Node() {
set = -1;
rev = false;
}
};
Node tree[ maxnode ];
int L , R , op;
void maintain( XX ) {
Node &o = tree[ x ];
if( r > l ) {
Node &lc = tree[ L( x ) ] , &rc = tree[ R( x ) ];
int m = M( l , r );
o.sum = lc.sum + rc.sum;
rep( i , 2 ) {
o.cnt[ i ] = max( max( lc.cnt[ i ] , rc.cnt[ i ] ) , lc.r_cnt[ i ] + rc.l_cnt[ i ] );
if( lc.l_cnt[ i ] == m - l + 1 )
o.l_cnt[ i ] = lc.l_cnt[ i ] + rc.l_cnt[ i ];
else
o.l_cnt[ i ] = lc.l_cnt[ i ];
if( rc.r_cnt[ i ] == r - m )
o.r_cnt[ i ] = rc.r_cnt[ i ] + lc.r_cnt[ i ];
else
o.r_cnt[ i ] = rc.r_cnt[ i ];
}
}
if( o.set != -1 ) {
o.sum = o.set ? r - l + 1 : 0;
o.cnt[ 1 ] = o.l_cnt[ 1 ] = o.r_cnt[ 1 ] = o.sum;
o.cnt[ 0 ] = o.l_cnt[ 0 ] = o.r_cnt[ 0 ] = r - l + 1 - o.sum;
}
if( o.rev ) {
o.sum = r - l + 1 - o.sum;
swap( o.l_cnt[ 0 ] , o.l_cnt[ 1 ] );
swap( o.r_cnt[ 0 ] , o.r_cnt[ 1 ] );
swap( o.cnt[ 0 ] , o.cnt[ 1 ] );
}
}
void pushdown( XX ) {
Node &o = tree[ x ] , &lc = tree[ L( x ) ] , &rc = tree[ R( x ) ];
if( o.set != -1 ) {
lc.set = rc.set = o.set;
lc.rev = rc.rev = false;
o.set = -1;
}
if( o.rev ) {
lc.rev ^= 1;
rc.rev ^= 1;
o.rev =false;
}
}
void update( XX ) {
Node &o = tree[ x ];
if( L <= l && r <= R ) {
if( op == 2 ) {
if( o.set != -1 ) o.set ^= 1;
else o.rev ^= 1;
} else {
o.set = op;
o.rev = false;
}
} else {
int m = M( l , r );
pushdown( X );
maintain( LC );
maintain( RC );
if( L <= m ) update( LC );
if( m < R ) update( RC );
}
maintain( X );
}
Node merge( int l , int r , Node lc , Node rc ) {
Node o;
int m = M( l , r );
o.sum = lc.sum + rc.sum;
rep( i , 2 ) {
o.cnt[ i ] = max( max( lc.cnt[ i ] , rc.cnt[ i ] ) , lc.r_cnt[ i ] + rc.l_cnt[ i ] );
if( lc.l_cnt[ i ] == m - l + 1 )
o.l_cnt[ i ] = lc.l_cnt[ i ] + rc.l_cnt[ i ];
else
o.l_cnt[ i ] = lc.l_cnt[ i ];
if( rc.r_cnt[ i ] == r - m )
o.r_cnt[ i ] = rc.r_cnt[ i ] + lc.r_cnt[ i ];
else
o.r_cnt[ i ] = rc.r_cnt[ i ];
}
return o;
}
Node query( XX ) {
Node &o = tree[ x ];
if( L <= l && r <= R )
return o;
int m = M( l , r );
pushdown( X );
maintain( LC );
maintain( RC );
if( R <= m ) return query( LC );
else if( m < L ) return query( RC );
else return merge( l , r , query( LC ) , query( RC ) );
}
void build( XX ) {
Node &o = tree[ x ];
if( l == r ) {
o.set =seq[ l ];
} else {
int m = M( l , r );
build( LC );
build( RC );
}
maintain( X );
}
int main() {
freopen( "test.in" , "r" , stdin );
int m;
cin >> n >> m;
Rep( i , n )
scanf( "%d" , seq + i );
build( 1 , 1 , n );
while( m-- ) {
scanf( "%d%d%d" , &op , &L , &R );
L++ , R++;
if( op < 3 ) update( 1 , 1 , n );
else {
Node o = query( 1 , 1 , n );
printf( "%d\n" , op == 3 ? o.sum : o.cnt[ 1 ] );
}
}
return 0;
}
----------------------------------------------------------------
1858: [Scoi2010]序列操作
Time Limit: 10 Sec Memory Limit: 64 MB
Submit: 1425 Solved: 737
[Submit][Status][Discuss]
Description
lxhgww最近收到了一个01序列,序列里面包含了n个数,这些数要么是0,要么是1,现在对于这个序列有五种变换操作和询问操作: 0 a b 把[a, b]区间内的所有数全变成0 1 a b 把[a, b]区间内的所有数全变成1 2 a b 把[a,b]区间内的所有数全部取反,也就是说把所有的0变成1,把所有的1变成0 3 a b 询问[a, b]区间内总共有多少个1 4 a b 询问[a, b]区间内最多有多少个连续的1 对于每一种询问操作,lxhgww都需要给出回答,聪明的程序员们,你们能帮助他吗?
Input
输入数据第一行包括2个数,n和m,分别表示序列的长度和操作数目 第二行包括n个数,表示序列的初始状态 接下来m行,每行3个数,op, a, b,(0<=op<=4,0<=a<=b
Output
对于每一个询问操作,输出一行,包括1个数,表示其对应的答案
Sample Input
10 10
0 0 0 1 1 0 1 0 1 1
1 0 2
3 0 5
2 2 2
4 0 4
0 3 6
2 3 7
4 2 8
1 0 5
0 5 6
3 3 9
Sample Output
5
2
6
5
HINT
对于30%的数据,1<=n, m<=1000
对于100%的数据,1<=n, m<=100000
Source
- (WAWAWAWAWAWA) BZOJ 1858: [Scoi2010]序列操作
二次联通门 : BZOJ 1858: [Scoi2010]序列操作 /* BZOJ 1858: [Scoi2010]序列操作 已经... 没有什么好怕的的了... 16K的代码... 调个MMP啊.. ...
- bzoj 1858: [Scoi2010]序列操作
1858: [Scoi2010]序列操作 Time Limit: 10 Sec Memory Limit: 64 MB 线段树,对于每个区间需要分别维护左右和中间的1和0连续个数,并在op=4时特殊 ...
- bzoj1858[Scoi2010]序列操作 线段树
1858: [Scoi2010]序列操作 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 3079 Solved: 1475[Submit][Statu ...
- 【bzoj1858】[Scoi2010]序列操作 线段树区间合并
题目描述 lxhgww最近收到了一个01序列,序列里面包含了n个数,这些数要么是0,要么是1,现在对于这个序列有五种变换操作和询问操作: 0 a b 把[a, b]区间内的所有数全变成0 1 a b ...
- Luogu P2572 [SCOI2010]序列操作 线段树。。
咕咕了...于是借鉴了小粉兔的做法ORZ... 其实就是维护最大子段和的线段树,但上面又多了一些操作....QWQ 维护8个信息:1/0的个数(sum),左/右边起1/0的最长长度(ls,rs),整段 ...
- bzoj1858 [Scoi2010]序列操作——线段树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1858 线段树...调了一个上午...(后面带 // 的都是改出来的) lazy 标记的下放好 ...
- bzoj 1858: [Scoi2010]序列操作 || 洛谷 P2572
记一下:线段树占空间是$2^{ceil(log2(n))+1}$ 这个就是一个线段树区间操作题,各种标记的设置.转移都很明确,只要熟悉这类题应该说是没有什么难度的. 由于对某区间set之后该区间原先待 ...
- 洛谷$P2572\ [SCOI2010]$ 序列操作 线段树/珂朵莉树
正解:线段树/珂朵莉树 解题报告: 传送门$w$ 本来是想写线段树的,,,然后神仙$tt$跟我港可以用珂朵莉所以决定顺便学下珂朵莉趴$QwQ$ 还是先写线段树做法$QwQ$? 操作一二三四都很$eas ...
- [SCOI2010]序列操作 线段树
---题面--- 题解: 在考场上打的这道题,出人意料的很快就打完了?! 直接用线段树,维护几个东西: 1,lazy标记 : 表示区间赋值 2,mark标记:表示区间翻转 3,l1:前缀最长连续的1的 ...
随机推荐
- Codeforces 116C - Party(dfs)
n个人,每个人之多有一个上司.“上司”关系具有传递性.求最少将人分成多少组,每组中的每个人的上司或者间接上司都不在该组.拿到题就用树的直径wa了一炮... 正解是有向无环森林的最长路.从每个跟节点df ...
- Ubuntu在ARM上建立NFS服务
先引用别人的做法: 1.进行NFS服务器端与客户端的安装: sudo apt-get install nfs-kernel-server nfs-common portmap 安装客户端的作用是可以在 ...
- oracle10g安装图解(win7)
一.Oracle10g 安装预备步骤取得 Oracle 10g 安装程序,或从 Oracle 技术网(OTN)下载光盘映像.在评估阶段您可以免费下载和使用无技术限制的全功能 Oracle,但在正式的商 ...
- Spring Boot使用Redis进行消息的发布订阅
今天来学习如何利用Spring Data对Redis的支持来实现消息的发布订阅机制.发布订阅是一种典型的异步通信模型,可以让消息的发布者和订阅者充分解耦.在我们的例子中,我们将使用StringRedi ...
- poj 2051 Argus(优先队列)
题目链接: http://poj.org/problem?id=2051 思路分析: 优先级问题,使用优先队列求解:当执行某个任务后,再增加一个任务到队列中, 该任务的优先级为执行任务的时间加上其时间 ...
- Parsing HTML with C++ (using Qt preferably) - Stack Overflow
Parsing HTML with C++ (using Qt preferably) - Stack Overflow Parsing HTML with C++ (using Qt prefera ...
- Why is celsius = 5 * (fahr - 32) / 9 ?
Go to my personal blog There is a program to print Fahrenheit-Celsius table as below. #include <s ...
- 通过JavaScript判断当前浏览器版本
从别人处拷贝,只用于自己学习之用.参考源自:http://www.cnblogs.com/leadzen/archive/2008/09/06/1285764.html JavaScript是前端开发 ...
- JQuery隔行变色
<html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server"> &l ...
- matlab实现协同过滤之pdist、squareform
实现协同过滤算法的第一步是:计算用户或项目之间的相似度.接下来介绍pdist和squareform 用法: D = pdist(X) D = pdist(X,distance) D = pdist ...