HDU2037 贪心 动归均可+证明
|
动归:
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
typedef struct node
{
int s;
int t;
}node;
node a[10001];
int F[25];
int cmp(const void *i,const void *j)
{ node *ii=(node *)i,*jj=(node *)j;
if(ii->t!=jj->t)
return ii->t-jj->t;
else
return ii->s-jj->s;
}
int max(int a,int b)
{
if(a>b) return a;
else return b;
}
int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
int n,i,j;
while(scanf("%d",&n)!=EOF&&n!=0)
{
memset(F,0,sizeof(F));
memset(a,0,sizeof(a));
for(i=1;i<=n;i++)
scanf("%d%d",&a[i].s,&a[i].t);
qsort(a+1,n,sizeof(a[1]),cmp);
j=1;
for(i=0;i<=100;i++)
{
if(i!=0)
F[i]=F[i-1];
for(;j<=n;j++)
{
if(a[j].t<i) {continue;}
if(a[j].t>i) {break;}
F[i]=max(F[i],F[a[j].s]+1);
}
}
printf("%d\n",F[100]);
}
return 0;
}
贪心证明(利用数学归纳法):
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
typedef struct node
{
int s;
int t;
}node;
node a[10001];
int ans=0;
int cmp(const void *i,const void *j)
{ node *ii=(node *)i,*jj=(node *)j;
if(ii->t!=jj->t)
return ii->t-jj->t;
else
return ii->s-jj->s;
}
int max(int a,int b)
{
if(a>b) return a;
else return b;
}
int main()
{
freopen("a.in","r",stdin);
freopen("b.out","w",stdout);
int n,i,j,end;
while(scanf("%d",&n)!=EOF&&n!=0)
{
ans=0;end=0;
memset(a,0,sizeof(a));
for(i=1;i<=n;i++)
scanf("%d%d",&a[i].s,&a[i].t);
qsort(a+1,n,sizeof(a[1]),cmp);
for(i=1;i<=n;i++)
{
if(a[i].s>=end)
ans++,end=a[i].t;
}
printf("%d\n",ans);
}
return 0;
}
HDU2037 贪心 动归均可+证明的更多相关文章
- CF2B The least round way(贪心+动规)
题目 CF2B The least round way 做法 后面\(0\)的个数,\(2\)和\(5\)是\(10\)分解质因数 则把方格中的每个数分解成\(2\)和\(5\),对\(2\)和\(5 ...
- [HDU2037]贪心入门
今年暑假不AC Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
- HDU6438 Buy and Resell 解题报告(一个有趣的贪心问题的严格证明)
写在前面 此题是一个很容易想到的贪心题目,但是正确性的证明是非常复杂的.然而,目前网上所有题解并未给出本题贪心算法的任何正确性证明,全部仅停留在描述出一个贪心算法.本着对算法与计算机科学的热爱(逃), ...
- The - Modcrab——使用贪心策略
一.题目信息 The - Modcrab 简单翻译一下:Vova有生命值h1,每次攻击值为a1,每瓶药水恢复生命值c1;Modcrab有生命值h2,每次攻击值为a2.在每个关卡开始,Vova有两种选择 ...
- noip知识点总结之--贪心
一.什么是贪心 贪心算法嘛... 就是在对某个问题求解时,总是做出在当前看来是最好的选择 In other wors,并不是从整体最优上加以考虑,而是在获得某种意义上的局部最优解 二.贪心算法的适用前 ...
- 最大公约数(gcd):Euclid算法证明
1个常识: 如果 a≥b 并且 b≤a,那么 a=b. 2个前提: 1)只在非负整数范围内讨论两个数 m 和 n 的最大公约数,即 m, n ∈ N. 2)0可以被任何数整除,但是0不能整除任何数,即 ...
- 剑指Offer——贪心算法
剑指Offer--贪心算法 一.基本概念 所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解.虽然贪心算法不能对 ...
- 【贪心算法】POJ-3040 局部最优到全局最优
一.题目 Description As a reward for record milk production, Farmer John has decided to start paying Bes ...
- CodeForcesdiv1:995C - Leaving the Bar(随机算法+贪心)
For a vector →v=(x,y)v→=(x,y), define |v|=√x2+y2|v|=x2+y2. Allen had a bit too much to drink at the ...
随机推荐
- 21. DNS 配置和端口检测
一.将本机的 DNS 配置为 8.8.8.8 ,用 nslookup (还可以使用 host.dig)验证 # 修改配置文件 # vim /etc/resolv.conf # 在文件的最后加入 ...
- NET中级课--文件,流,序列化2
1.流的类型体系: 基础流 装饰器流 包装器类 帮助类 2. stream file~ memory~ network~ stream是个 ...
- NET基础课-- 类型基础(NET之美)
1.类型:值类型 引用类型. 分类依据:类型在内存的分配方式.值类型在堆栈,引用类型在托管堆. 名词:栈--所有变量都会被分配在栈上,只不过值类型直接含有数据,引用类型含有一个指向托管堆对象的地址. ...
- Tcp 数据对象传输接口对象设计
输入是一个对象inputObj,接口对象.Send(inputObj),对端接收之后解包成outputObj(与inputObj应相同),触发onPackageReceive事件 事件 public ...
- bower安装使用以及git安装
bower需要:node 和 git node安装包下载:http://blog.csdn.net/myan/article/details/2028545 Git安装: 选择第二项:Use Git ...
- 爆出错误:The Geometry has no Z values
ArcGis添加地图标注,爆出错误:The Geometry has no Z values 解决方法如下: public bool AddFeature( ESRI.ArcGIS.Geometry. ...
- C# WebForm 使用NPOI 2 生成简单的word文档(.docx)
使用NPOI可以方便的实现服务端对Word.Excel的读写.要实现对Word的读写操作,需要引用NPOI.OOXML.dll,应用命名空间XWPF. 本文使用NPOI 2.0实现对Word的基本生成 ...
- WebApi官网学习记录---web api中的路由
如果一条路由匹配,WebAPI选择controller和action通过如下方式: 1.找到controller,将"controller"赋值给{controller}变量 2. ...
- sqlserver 执行远程数据库代码
1.启用Ad Hoc Distributed Queries: exec sp_configure 'show advanced options',1reconfigureexec sp_config ...
- js-String
1.一个字符串可以使用单引号或双引号 2.查找 字符串使用 indexOf() 来定位字符串中某一个指定的字符首次出现的位置 如果没找到对应的字符函数返回-1 lastIndexOf() 方法在字符串 ...