题意:

求两个串的最长连续子串。

我的想法:

枚举第二个串...在第一个串的后缀数组中二分查找.

复杂度NlogN。最坏情况N^2

题解:

(3)height 数组:定义height[i]=suffix(SA[i-1])和suffix(SA[i])的最长公共前缀,也就是排名相邻的两个后缀的最长公共前缀。

(4) h[i]=height[rank[i]],也就是suffix(i)和在它前一名的后缀的最长公共前缀。

(5)LCP(i,j):对正整数i,j 定义LCP(i,j)=lcp(Suffix(SA[i]),Suffix(SA[j]),其中i,j 均为1 至n 的整数。LCP(i,j)也就是后缀数组中第i 个和第j 个后缀的最长公共前缀的长度。其中,函数lcp(u,v)=max{i|u=v},也就是从头开始顺次比较u 和v 的对应字符,对应字符持续相等的最大位置,称为这两个字符串的最长公共前缀。

2.2   几个性质

(1)LCP(i,j)=min{height[k]|i+1≤k≤j},也就是说,计算LCP(i,j)等同于询问一维数组height 中下标在i+1 到j 范围内的所有元素的最小值。

   

(1) 最长公共子串。给定两个字符串A 和B,求最长公共子串。

『解析』先将第二个字符串写在第一个字符串后面,中间用一个没有出现过的字符隔开,再求这个新的字符串的后缀数组。当suffix(sa[i-1]) 和suffix(sa[i])不是同一个字符串中的两个后缀时,max{height[i]}才是满足条件


..代码 二段 有一种WA了1万次才过
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <ctime>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <string>
#define oo 0x13131313
using namespace std;
/*
*suffix array
*倍增算法 O(n*logn)
*待排序数组长度为n,放在0~n-1中,在最后面补一个0
*build_sa( ,n+1, );//注意是n+1;
*getHeight(,n);
*例如:
*n = 8;
*num[] = { 1, 1, 2, 1, 1, 1, 1, 2, $ };注意num最后一位为0,其他大于0
*rank[] = { 4, 6, 8, 1, 2, 3, 5, 7, 0 };rank[0~n-1]为有效值,rank[n]必定为0无效值
*sa[] = { 8, 3, 4, 5, 0, 6, 1, 7, 2 };sa[1~n]为有效值,sa[0]必定为n是无效值
*height[]= { 0, 0, 3, 2, 3, 1, 2, 0, 1 };height[2~n]为有效值
*
*/
const int MAXN=300000+5;
char S1[MAXN],S2[MAXN];
int sa[MAXN];
int t1[MAXN],t2[MAXN],c[MAXN];
int rank[MAXN],height[MAXN];
void build_sa(int s[],int n ,int m)
{
int i,j,p,*x=t1,*y=t2;
for(int i=0;i<m;i++) c[i]=0;
for(int i=0;i<n;i++) c[x[i]=s[i]]++;
for(int i=0;i<m;i++) c[i]+=c[i-1];
for(int i=n-1;i>=0;i--) sa[--c[x[i]]]=i;
for(j=1;j<=n;j<<=1)
{
p=0;
for(i=n-j;i<n;i++) y[p++]=i;
for(i=0;i<n;i++) if(sa[i]>=j) y[p++]=sa[i]-j;
for(i=0;i<m;i++) c[i]=0;
for(i=0;i<n;i++) c[x[y[i]]]++;
for(i=0;i<m;i++) c[i]+=c[i-1];
for(i=n-1;i>=0;i--) sa[--c[x[y[i]]]]=y[i];
swap(x,y);
p=1;x[sa[0]]=0;
for(i=1;i<n;i++)
x[sa[i]]=(y[sa[i-1]]==y[sa[i]])&&(y[sa[i-1]+j]==y[sa[i]+j])?p-1:p++;
if(p>=n) break;
m=p;
}
}
int s[MAXN];
int len1,len2,ans=0;
void getHeight(int s[],int n)
{
int i,j,k=0;
for(i=0;i<=n;i++)rank[sa[i]]=i;
for(i=0;i<n;i++)
{
if(k)k--;
j=sa[rank[i]-1];
while(s[i+k]==s[j+k])k++;
height[rank[i]]=k;
}
}
int main()
{
// freopen("a.in","r",stdin);
// freopen("a.out","w",stdout);
while(scanf("%s",S1)!=EOF)
{
int ans=0;
len1=strlen(S1);
scanf("%s",S2);
len2=strlen(S2);
for(int i=0;i<len1;i++) s[i]=S1[i];
s[len1]='$';
for(int i=len1+1;i<=len2+len1+1;i++) s[i]=S2[i-len1-1];
build_sa(s,len1+len2+2,256);
getHeight(s,len1+len2+1);
for(int i=2;i<=len1+len2+1;i++)
{
int MAX=max(sa[i-1],sa[i]);
int MIN=min(sa[i-1],sa[i]);
if(MAX>len1&&MIN<len1)
{
if(ans<height[i])
ans=height[i];
}
}
cout<<ans<<endl;
}
}
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <ctime>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <string>
#define oo 0x13131313
using namespace std;
/*
*suffix array
*倍增算法 O(n*logn)
*待排序数组长度为n,放在0~n-1中,在最后面补一个0
*build_sa( ,n+1, );//注意是n+1;
*getHeight(,n);
*例如:
*n = 8;
*num[] = { 1, 1, 2, 1, 1, 1, 1, 2, $ };注意num最后一位为0,其他大于0
*rank[] = { 4, 6, 8, 1, 2, 3, 5, 7, 0 };rank[0~n-1]为有效值,rank[n]必定为0无效值
*sa[] = { 8, 3, 4, 5, 0, 6, 1, 7, 2 };sa[1~n]为有效值,sa[0]必定为n是无效值
*height[]= { 0, 0, 3, 2, 3, 1, 2, 0, 1 };height[2~n]为有效值
*
*/
const int MAXN=300000+5;
char S1[MAXN],S2[MAXN];
int sa[MAXN];
int t1[MAXN],t2[MAXN],c[MAXN];
int rank[MAXN],height[MAXN];
void build_sa(int s[],int n ,int m)
{
int i,j,p,*x=t1,*y=t2;
for(int i=0;i<m;i++) c[i]=0;
for(int i=0;i<n;i++) c[x[i]=s[i]]++;
for(int i=0;i<m;i++) c[i]+=c[i-1];
for(int i=n-1;i>=0;i--) sa[--c[x[i]]]=i;
for(j=1;j<=n;j<<=1)
{
p=0;
for(i=n-j;i<n;i++) y[p++]=i;
for(i=0;i<n;i++) if(sa[i]>=j) y[p++]=sa[i]-j;
for(i=0;i<m;i++) c[i]=0;
for(i=0;i<n;i++) c[x[y[i]]]++;
for(i=0;i<m;i++) c[i]+=c[i-1];
for(i=n-1;i>=0;i--) sa[--c[x[y[i]]]]=y[i];
swap(x,y);
p=1;x[sa[0]]=0;
for(i=1;i<n;i++)
x[sa[i]]=(y[sa[i-1]]==y[sa[i]])&&(y[sa[i-1]+j]==y[sa[i]+j])?p-1:p++;
if(p>=n) break;
m=p;
}
}
int s[MAXN];
int len1,len2,ans=0;
void getHeight(int s[],int n)
{
int i,j,k=0;
for(i=0;i<=n;i++)rank[sa[i]]=i;
for(i=0;i<n;i++)
{
if(k)k--;
j=sa[rank[i]-1];
while(s[i+k]==s[j+k])k++;
height[rank[i]]=k;
}
}
int main()
{
//freopen("a.in","r",stdin);
//freopen("a.out","w",stdout);
while(scanf("%s",S1)!=EOF)
{
int ans=0;
len1=strlen(S1);
scanf("%s",S2);
len2=strlen(S2);
for(int i=0;i<len1;i++) s[i]=S1[i];
s[len1]='@';
for(int i=len1+1;i<=len2+len1+1;i++) s[i]=S2[i-len1-1];
build_sa(s,len1+len2+2,128);
getHeight(s,len1+len2+1);
for(int i=2;i<=len1+len2+1;i++)
{
if((long long)(sa[i]-len1)*(long long)(sa[i-1]-len1)<0) //乘爆了long long WA了无数发 真是酸爽
{
if(ans<height[i])
ans=height[i];
}
}
cout<<ans<<endl;
}
}


【后缀数组】【poj2774】【 Long Long Message】的更多相关文章

  1. 【POJ2774】Long Long Message(后缀数组)

    [POJ2774]Long Long Message(后缀数组) 题面 Vjudge Description Little cat在Byterland的首都读物理专业.这些天他收到了一条悲伤地信息:他 ...

  2. POJ2774 Long Long Message —— 后缀数组 两字符串的最长公共子串

    题目链接:https://vjudge.net/problem/POJ-2774 Long Long Message Time Limit: 4000MS   Memory Limit: 131072 ...

  3. poj2774 Long Long Message 后缀数组求最长公共子串

    题目链接:http://poj.org/problem?id=2774 这是一道很好的后缀数组的入门题目 题意:给你两个字符串,然后求这两个的字符串的最长连续的公共子串 一般用后缀数组解决的两个字符串 ...

  4. 【POJ2774】Long Long Message(后缀数组求Height数组)

    点此看题面 大致题意: 求两个字符串中最长公共子串的长度. 关于后缀数组 关于\(Height\)数组的概念以及如何用后缀数组求\(Height\)数组详见这篇博客:后缀数组入门(二)--Height ...

  5. (HDU 5558) 2015ACM/ICPC亚洲区合肥站---Alice's Classified Message(后缀数组)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=5558 Problem Description Alice wants to send a classi ...

  6. POJ 2774 Long Long Message 后缀数组

    Long Long Message   Description The little cat is majoring in physics in the capital of Byterland. A ...

  7. poj2774 后缀数组2个字符串的最长公共子串

    Long Long Message Time Limit: 4000MS   Memory Limit: 131072K Total Submissions: 26601   Accepted: 10 ...

  8. poj 2774 Long Long Message 后缀数组基础题

    Time Limit: 4000MS   Memory Limit: 131072K Total Submissions: 24756   Accepted: 10130 Case Time Limi ...

  9. POJ2774 & 后缀数组模板题

    题意: 求两个字符串的LCP SOL: 模板题.连一起搞一搞就好了...主要是记录一下做(sha)题(bi)过程心(cao)得(dan)体(xin)会(qing) 后缀数组概念...还算是简单的,过程 ...

随机推荐

  1. IoC容器Autofac正篇之类型关联(服务暴露)(七)

    类型关联 类型关联就是将类挂载到接口(一个或多个)上去,以方便外部以统一的方式进行调用(看下例). 一.As关联 我们在进行手动关联时,基本都是使用As进行关联的. class Program { s ...

  2. HTML5 本地裁剪图片并上传至服务器(转)

    很多情况下用户上传的图片都需要经过裁剪,比如头像啊什么的.但以前实现这类需求都很复杂,往往需要先把图片上传到服务器,然后返回给用户,让用户确定裁剪坐标,发送给服务器,服务器裁剪完再返回给用户,来回需要 ...

  3. VS 2003 无法打开Web项目,位于服务器“http:10.45.4.70:8080”上的项目不存在

    解决方法: 用记事本打开*.sln文件更改第2行 改成正确的虚拟目录 出现这种情况往往是从一台机器搬到另一台机器造成的虚拟路径名字不同

  4. (转+原)ipp "No dlls were found in the Waterfall procedure"

    转自: http://blog.csdn.net/hua_007/article/details/9112909 1,吧 dll的目录放到系统环境变量中 intel 的官方推荐.验证是ok的. --- ...

  5. Js之Screen对象

    Window Screen window.screen 对象在编写时可以不使用 window 这个前缀. 属性: screen.availWidth - 可用的屏幕宽度,以像素计,减去界面特性,比如窗 ...

  6. CSS3动画之旋转魔方盒

    步骤: 1.大盒子里盛放六个子盒子代表立方体的6个面: 2.子盒子开启3d效果  transform-style:preserve-3d; 3.上下面沿X轴旋转90度,一个上移盒子一半高,一个下移盒子 ...

  7. SqlServer排序(null值,和非空值排列顺序)

    项目中遇到一个问题,需要设置序号排序,而该字段中的默认值为空,使用普通排序,空值就会在最前边.可以使用如下语句:   其中 col 为 排序的字段名称. then 0 else 1 代表先空值,后数字 ...

  8. 【待整理】IOS开发之下载

    一.传统的下载文件的方式 - (void)downloaderWithUrl:(NSURL *)url { NSURLRequest *request = [NSURLRequest requestW ...

  9. window7下statsvn统计代码量

    下载statsvn:http://www.statsvn.org/ 将下载后的statsvn.jar放到d:\svn目录下; 打开cmd窗口切换到需要统计代码的项目目录如:d:\project\web ...

  10. Log4net 可直接使用的配置

    config配置 <xml version="1.0"> <configuration> <configSections> <!--配置一 ...