题目

如题。

算法

就是刚学习的插头DP。

从前往后从后往前分别进行一次DP。

要点

合法的括号序列只有103个

如何合并两次dp的信息

一开始犯傻了,以为当且仅当两个轮廓线的状态相同才是合法的方案。其实很容易举出反例。

如果直接枚举的话,每次询问的时间复杂度是\(O(103^2 m)\)。

为了加快速度,可以把所有合法的方案先列举出来(就是预处理),只有\(103^2\)个。每次询问的复杂度优化为\(O(103^2)\)。

时间复杂度

\(O(103 \cdot n \cdot m + 103^2 * m + 103^2 Q)\)

代码

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; typedef long long i64; const int MaxN = 1000;
const int MaxM = 6;
const int MaxS = 103;
const int MOD = (int) 1e9 + 7; int n, m;
int A[MaxN][MaxM]; #define getbit(s, i) ((s) >> ((i) << 1) & 3)
#define clrbit(s, i) ((s) & ~(3 << ((i) << 1)))
#define clrbit2(s, i, j) (clrbit( clrbit(s, i), j))
#define cpbit(s, i, x) ((s) ^ ((x) << ((i) << 1)))
#define revbit(s, i) ((s) ^ (1 << ((i) << 1))) template <class T>
void addIt(T &a, const T &b)
{
a += b;
if (a >= MOD) a -= MOD;
} struct Hash
{
int n;
pair<int, int> A[MaxS]; struct Link
{
int to;
Link *next;
}pool[MaxS], *pool_cur, *info[MaxS]; void sort()
{
std::sort(A, A + n);
} int find(const int &x)
{
pair<int, int> *p = lower_bound(A, A + n, make_pair(x, -1));
if (p->first == x) return p->second;
return 0;
} Hash()
{
pool_cur = pool;
} void update()
{
int i = 0;
while (i < n)
{
if (getbit(A[i].first, m))
A[i] = A[-- n];
else
i ++;
}
} void push(const int &s, const int &x)
{
int hash = s % MaxS;
for (Link *p = info[hash]; p; p = p->next)
{
if (A[p->to].first == s)
{
addIt(A[p->to].second, x);
return;
}
}
pool_cur->to = n;
pool_cur->next = info[hash];
info[hash] = pool_cur ++;
A[n ++] = make_pair(s, x);
}
}dp[2][MaxN + 1][MaxM]; int getbracket0(const int &s, const int &i)
{
int cnt = 1;
for (int k = i + 1; k < m; k ++)
{
int t = getbit(s, k);
if (t)
{
if (t & 1) cnt --;
else cnt ++;
}
if (!cnt) return k;
}
return -1;
} int getbracket1(const int &s, const int &i)
{
int cnt = -1;
for (int k = i - 1; k >= 0; k --)
{
int t = getbit(s, k);
if (t)
{
if (t & 1) cnt --;
else cnt ++;
}
if (! cnt) return k;
}
return -1;
} void Process(Hash (*dp)[MaxM])
{
dp[0][0].push(0, 1); for (int i = 0; i < n; i ++)
{
for (int j = 0; j < m; j ++)
{
Hash &cur = dp[i][j], &next = j == m - 1 ? dp[i + 1][0] : dp[i][j + 1];
for (int k = 0; k < cur.n; k ++)
{
int s = cur.A[k].first;
int x = cur.A[k].second;
int L = getbit(s, m);
int U = getbit(s, j); #define send(st) next.push(st, x) if (!A[i][j])
{
if (L && U)
{
L &= 1, U &= 1;
if (!L && !U)
send(revbit( clrbit2(s, j, m), getbracket0(s, j)));
else if (L && !U)
send(clrbit2(s, j, m));
else if (L && U)
send(revbit( clrbit2(s, j, m), getbracket1(s, j)));
}
else if (L)
{
send(s);
send(clrbit( cpbit(s, j, L), m));
}
else if (U)
{
send(s);
send(clrbit( cpbit(s, m, U), j));
}
else
{
send(s);
send(cpbit( cpbit(s, j, 2), m, 3));
}
}
else if (!L && !U)
send(s);
} cerr << next.n << endl;
if (j == m - 1) next.update();
}
}
} int P[729], Pn; // 3^m
int Qn;
pair<int, int> Q[729 * 729]; void dfs(int i, int cnt, int s)
{
if (i == m)
{
if (! cnt && s)
{
P[Pn ++] = s;
}
}
else
{
dfs(i + 1, cnt + 1, s ^ (2 << (i << 1)));
if (cnt)
dfs(i + 1, cnt - 1, s ^ (3 << (i << 1)));
dfs(i + 1, cnt, s);
}
} int getbracket(const int &a, const int &j)
{
if (getbit(a, j) & 1)
{
int cnt = -1;
for (int i = j - 1; i >= 0; i --)
{
int t = getbit(a, i);
if (t)
{
if (t & 1) cnt --;
else cnt ++; if (! cnt) return i;
}
}
}
else
{
int cnt = 1;
for (int i = j + 1; i < m; i ++)
{
int t = getbit(a, i);
if (t)
{
if (t & 1) cnt --;
else cnt ++;
if (! cnt) return i;
}
}
}
return -1;
} bool eliminate(int &a, int at, int &b, const int &start)
{
if (getbit(a, at) == 0) return at == start;
int other = getbracket(a, at);
a = clrbit2(a, at, other);
if (!eliminate(b, other, a, start)) return false;
return true;
} bool check(int a, int b)
{
for (int i = 0; i < n; i ++)
if (getbit(a, i))
{
if (! eliminate(a, i, b, i)) return false;
return a == 0 && b == 0;
}
return false;
} int main()
{
int k;
scanf("%d%d", &n, &m);
scanf("%d", &k); while (k --)
{
int x, y;
scanf("%d%d", &x, &y);
x --, y --;
A[x][y] = 1;
} Process(dp[0]);
for (int i = 0; i < n >> 1; i ++)
{
int j = n - i - 1;
for (int k = 0; k < m; k ++)
swap(A[i][k], A[j][k]);
}
Process(dp[1]); dfs(0, 0, 0);
for (int i = 0; i < Pn; i ++)
for (int j = 0; j < Pn; j ++)
{
if (check(P[i], P[j]))
{
Q[Qn ++] = make_pair(P[i], P[j]);
}
} scanf("%d", &k); for (int i = 0; i < n; i ++)
{
dp[0][i][0].sort();
dp[1][i][0].sort();
}
while (k --)
{
int x, y;
scanf("%d%d", &x, &y);
x --, y --;
int ans = 0;
for (int i = 0; i < Qn; i ++)
{
if (getbit(Q[i].first, y))
{
addIt(ans, (int) ((i64) dp[0][x + 1][0].find(Q[i].first) *
dp[1][n - x - 1][0].find(Q[i].second) % MOD));
}
}
printf("%d\n", ans);
} return 0;
}

清华集训2014 day2 task1 简单回路的更多相关文章

  1. 清华集训2014 day1 task1 玛里苟斯

    题目 这可算是描述很简单的一道题了!但是不简单. \(S\)是一个可重集合,\(S = \{a_1, a_2, \dots, a_n \}\). 等概率随机取\(S\)的一个子集\(A = \{a_{ ...

  2. 清华集训2014 day2 task3 矩阵变换

    题目 算法 稳定婚姻系统(其实就是贪心) 一个方案不合法,当且仅当下面这种情况: 设第\(i\)行选了数字\(x\),如果第\(j\)行有一个\(x\)在第\(i\)行的\(x\)后面,并且第\(j\ ...

  3. uoj 41 【清华集训2014】矩阵变换 婚姻稳定问题

    [清华集训2014]矩阵变换 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/41 Description 给出 ...

  4. AC日记——【清华集训2014】奇数国 uoj 38

    #38. [清华集训2014]奇数国 思路: 题目中的number与product不想冲: 即为number与product互素: 所以,求phi(product)即可: 除一个数等同于在模的意义下乘 ...

  5. 【BZOJ3814】【清华集训2014】简单回路 状压DP

    题目描述 给你一个\(n\times m\)的网格图和\(k\)个障碍,有\(q\)个询问,每次问你有多少个不同的不经过任何一个障碍点且经过\((x,y)\)与\((x+1,y)\)之间的简单回路 \ ...

  6. 清华集训2014 sum

    清华集训2014sum 求\[∑_{i=1}^{n}(-1)^{⌊i√r⌋}\] 多组询问,\(n\leq 10^9,t\leq 10^4, r\leq 10^4\). 吼题解啊 具体已经讲得很详细了 ...

  7. UOJ#46. 【清华集训2014】玄学

    传送门 分析 清华集训真的不是人做的啊嘤嘤嘤 我们可以考虑按操作时间把每个操作存进线段树里 如果现在点x正好使一个整块区间的右端点则更新代表这个区间的点 我们不难发现一个区间会因为不同的操作被分成若干 ...

  8. 清华集训2014 day1 task3 奇数国

    题目 题目看起来好像很难的样子!其实不然,这是最简单的一道题. 算法 首先要注意的是: \(number \cdot x + product \cdot y = 1\) ,那么我们称\(number\ ...

  9. 【UOJ#37】 [清华集训2014] 主旋律

    题目链接 题目描述 给定一张强联通图,求有多少种边的存在情况满足图依然强联通. \(n\leq15\) Sol 首先正难则反,考虑用总数减去不强联通的. 考虑一张不强联通的图,缩点后一定是一个 DAG ...

随机推荐

  1. struct 如何存储指针类型的值

    通过 __unsafe_unretained标示符标示指针类型的值,否则xcode会报以下错误(前提,你使用的是ARC模式): ARC forbids Objective-C objects in s ...

  2. Android Studio does not point to a valid jvm

    环境变量 JAVA_HOME的值,去掉后面的分号,一般情况下就可以启动

  3. mysql存储过程详解[转]

    1.      存储过程简介   我们常用的操作数据库语言SQL语句在执行的时候需要要先编译,然后执行,而存储过程(Stored Procedure)是一组为了完成特定功能的SQL语句集,经编译后存储 ...

  4. [LeetCode]题解(python):009-Palindrome Number

    题目来源: https://leetcode.com/problems/palindrome-number/ 题意分析: 这题是要判断一个int是否一个回文数,要求不能申请额外的空间. 题目思路: 这 ...

  5. ajax是怎么发请求的和浏览器发的请求一样吗?cookie

    下午设置cookie时出现了个问题 用ajax发的post请求php,在php的方法里设置了cookie,然后在浏览器请求的php里打印cookie值但是一直获取不到cookie的值 分析: 1.aj ...

  6. 第一章:介绍Django

    django简单来说就是一个Web开发框架.Web框架为应用程序提供了一套程序框架,这样你可以专注于编写清晰.易维护的代码,而无需从头做起. models.py文件主要用一个Python类来描述数据表 ...

  7. 宣布正式发布 Biz Talk Services、Azure Active Directory 和 Traffic Manager, 同时发布 Azure Active Directory 高级版预览

    除经济优势之外,云计算还在可转化为竞争优势的应用程序开发方面提供了更大的灵活性.我们很高兴看到每天创建的新 Windows Azure 订阅超过 1000 个,更令人兴奋的是,有一半客户使用价值更高的 ...

  8. levelDB跳表实现

    跳表的原理就是利用随机性建立索引,加速搜索,并且简化代码实现难度.具体的跳表原理不再赘述,主要是看了levelDB有一些实现细节的东西,凸显自己写的实现不足之处. 去除冗余的key template& ...

  9. UITabbar的常用属性

    // //设置tabbar的背景颜色 // [self.tabBar setBarTintColor:[UIColor redColor]]; // //设置选中时图片和文字的颜色 // [self. ...

  10. vim下设置tab

    前言:大多数情况下tab键的宽度设置为4个空格,这个可以根据自己 的代码风格进行替换,然而当你提交不同的语言的代码的时候python 和c的时候就有区别了.c的话一般tab键做缩进,而python提交 ...