题目:用O(1)的空间实现矩阵的转置

为了方便,使用一维数组来分析。所谓矩阵转置,行变列,列变行。在转置的过程中,有的元素位置是不变的;对于变化位置的元素,要求O(1)空间完成,那么这些位置的变化一定是有着规律的。

举例,2×5的矩阵,A={0,1,2,3,4,5,6,7,8,9};转置后为AT={0,5,1,6,2,7,3,8,4,9},探索下标变化:

0->0

1->2->4->8->7->5->1

3->6->3

9->9

这些下标的变化是一些环,如果我们能找到这个环,对环做移动处理,就可以O(1)完成了。

现在的问题是,我们如何知道一个环是已经处理过的,仔细观察,如果一个环被处理过,那么总能找到一个它的后继是小于它的。例如,处理了前三个环的时候,当尝试找下标4打头的环时,一直找4的后继下标,会发现后继1是小于4的,我们就知道4是存在于一条已经处理过的环,跳过。

接下来的问题是如何找到当前元素下标的前驱和后继。先求下标i转置前的下标,即i的前驱,对于m×n的矩阵,转置后为n×m,则一维数组的第i个元素表示的行列为(i/m, i%m),根据转置原理,那么这个元素在转置前的m×n矩阵中所表示的行列为(i%m, i/m),那么i在转置前一维数组中的位置为j=(i%m)×n+(i/m)。同理,下标i转置后的位置j=(i%n)×m+(i/n)。

这样,前驱后继都可以求得,找到环就移动环的元素,如果已处理过则跳过,代码如下:

评论:个人觉得每条环总能找到一个它的后继是小于它的原因在于,每条环开始的第一个位置下标总是整条环中最小的,所以只有第一次能遍历权环并回到开始的点。而之所以每条环开始的第一个位置下标最小,是因为整个数组的遍历过程是从小到大,可以保证比每条环开始的位置小的位置都被遍历过了。

int Pre(int index, int m, int n) // 求前驱
{
    return (index % m) * n + (index / m);
}
 
int Next(int index, int m, int n) // 求后继
{
    return (index % n) * m + (index / n);
}
 
void  move(int * a, int i, int m, int n) // 处理环
{
    int curVal =  a[i];
    int cur = i;
    int pre = Pre(i,m,n);
    while(i != pre)
    {
        a[cur] = a[pre];
        cur = pre;
        pre = Pre(cur,m,n);
    }
    a[cur] = curVal;
}
 
void transpose(int *a, int m, int n)  // 转置
{
    for(int i = 0; i < m*n; ++i)
    {
        int next = Next(i,m,n);
        while(i < next)  // 若大于说明已处理过
        {
            next = Next(next,m,n);
        }
        if(next == i)
        {
            move(a,i,m,n);
        }
    }
}
int main()
{
    int a[10] = {0,1,2,3,4,5,6,7,8,9};
    for(int i = 0; i < 10; ++i)
    {
        printf("%d ",a[i]);
    }
    printf("\n");
    transpose(a,2,5);
    for(int i = 0; i < 10; ++i)
    {
        printf("%d ",a[i]);
    }
    printf("\n");
    return 0;
}

转自:http://www.ahathinking.com/archives/217.html

更多:http://zhiqiang.org/blog/science/computer-science/another-perfect-shuffle-algorithm.html

http://space.itpub.net/67063/viewspace-169250

矩阵转置 O(1)空间的更多相关文章

  1. <矩阵的基本操作:矩阵相加,矩阵相乘,矩阵转置>

    //矩阵的基本操作:矩阵相加,矩阵相乘,矩阵转置 #include<stdio.h> #include<stdlib.h> #define M 2 #define N 3 #d ...

  2. 【异构计算】OpenCL矩阵转置

    介绍 矩阵转置,主要的技巧还是利用好local memory ,防止local memory,以及glabol memory的读取尽量是合并读写. 完整代码一: main.cpp代码 #include ...

  3. [转]Python中的矩阵转置

    Python中的矩阵转置 via 需求: 你需要转置一个二维数组,将行列互换. 讨论: 你需要确保该数组的行列数都是相同的.比如: arr = [[1, 2, 3], [4, 5, 6], [7, 8 ...

  4. [置顶] [MATLAB技术贴]漫谈MATLAB矩阵转置

    矩阵转置是matlab最基本的操作了,但这个基本操作,也是很多初学者容易出现问题的地方.本帖通过几个实例演示matlab矩阵转置的操作. 方法一:'  运算符与  .'  运算符 >>a ...

  5. POJ3268 Silver Cow Party(dijkstra+矩阵转置)

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15156   Accepted: 6843 ...

  6. 基于visual Studio2013解决C语言竞赛题之0705矩阵转置

     题目 解决代码及点评 /* 5. 写一函数,将一个3×3的矩阵转置. */ #include <stdio.h> #include <stdlib.h> void mai ...

  7. Python小代码_5_二维矩阵转置

    使用列表推导式实现二维矩阵转置 matrix = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] print(matrix) matrix_t = [[ro ...

  8. LHC大神问的矩阵转置问题

    数学中线性代数中提到的矩阵转置,其实在我们的业务场景中也有需要的地方,比如LHC大神问到的这个问题 那么如何进行行列转换呢? 代码如下: <?php $array=array( '部门1'=&g ...

  9. c++刷题(15/100)矩阵转置,最深子树

    题目一:矩阵转置 给定一个矩阵 A, 返回 A 的转置矩阵. 矩阵的转置是指将矩阵的主对角线翻转,交换矩阵的行索引与列索引. 示例 1: 输入:[[1,2,3],[4,5,6],[7,8,9]] 输出 ...

随机推荐

  1. 在Azure Cloud Service中部署Java Web App(2)

    接上文. 9.在进行发布之前,需要对我们的订阅做一些设置,因为默认情况下,Azure的service end指向的是Azure global的站点,如果我们要将服务发布在Azure的中国站点,需要做下 ...

  2. MS SQL 小总结

    1.获取当前数据库下所有的表名称: Use 你的数据库 select Name from sysobjects where xtype='U' 2.获取当前表下的列名: select name fro ...

  3. Python中:self和__init__的含义 + 为何要有self和__init__

    Python中:self和__init__的含义 + 为何要有self和__init__ 背景 回复: 我写的一些Python教程,需要的可以看看 中SongShouJiong的提问: Python中 ...

  4. linux之cal命令

    现在时间2014/11/25 21:36 让我们简单了解下日历命令的用法 1.显示当月的日历 2.显示一年的日历 3.显示2014年2月的月历

  5. 【POJ 3009 Curling2.0 迷宫寻径 DFS】

    http://poj.org/problem?id=3009 模拟冰壶的移动,给出到达终点的最少投掷次数(不可达时为-1). 具体移动规则如下: 每次选四个方向之一,沿此方向一直前进,直到撞到bloc ...

  6. UML_交互图

    交互图(Interaction Diagram)用来描述系统中的对象是如何进行相互作用的.即一组对象是如何进行消息传递的. 当交互图建模时,通常既包括对象(每个对象都扮演某一特定的角色),又包括消息( ...

  7. 【LeetCode练习题】Copy List with Random Pointer

    Copy List with Random Pointer A linked list is given such that each node contains an additional rand ...

  8. Problem "g++" ("gcc") not found in PATH [ in omnet++ ] ---- 关于OMNeT++软件使用问题

    出现的问题就像下面这样: 解释一下我出现这种情况的背景: 1. 首先安装好了OMNeT++软件,关于OMNeT++软件是否安装成功详见另一篇文章 OMNeT++安装教程 2. 也安装好了GCC编译环境 ...

  9. 菜鸟必须知道的linux的文件目录结构

    Linux文件目录结 / 根目录,所有的目录.文件.设备都在/之下,/就是Linux文件系统的组织者,也是最上级的领导者. /bin bin就是二进制(binary)英文缩写.在一般的系统当中,你都可 ...

  10. InfluxDB 开源分布式时序、事件和指标数据库

    InfluxDB 是一个开源分布式时序.事件和指标数据库.使用 Go 语言编写,无需外部依赖.其设计目标是实现分布式和水平伸缩扩展. 特点 schemaless(无结构),可以是任意数量的列 Scal ...