python for data analysis 2nd 读书笔记(一)
第一章相对简单,也么有什么需要记录的内容,主要用到的工具的简介及环境配置,粗略的过一下就行了。下面我们开始第二章的学习
CHAPTER 2
2.2Python Language Basics, IPython, and Jupyter Notebooks
when you first meet the python ,you may be confuse by
In [6]: data = {i : np.random.randn() for i in range(7)}
In [7]: data
Out[7]:
{0: -0.20470765948471295,
1: 0.47894333805754824,
2: -0.5194387150567381,
3: -0.55573030434749,
4: 1.9657805725027142,
5: 1.3934058329729904,
6: 0.09290787674371767}
While entering expressions in the shell, pressing the Tab key will search the namespace for any variables (objects,functions, etc.) matching the characters you have typed so far:
In [1]: an_apple = 27
In [2]: an_example = 42
In [3]: an<Tab>
an_apple and an_example any
the 'tab' is very useful ,when you use Ipython or Jupyter,also pycharm, it can compliment your order
Introspection
Using a question mark (?) before or after a variable will display some general infor‐
mation about the object:
In [8]: b = [1, 2, 3]
In [9]: b?
Type: list
String Form:[1, 2, 3]
Length: 3
Docstring:
In [10]: print?
Docstring:
print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False)
Prints the values to a stream, or to sys.stdout by default.
Optional keyword arguments:
file: a file-like object (stream); defaults to the current sys.stdout.
sep: string inserted between values, default a space.
end: string appended after the last value, default a newline.
flush: whether to forcibly flush the stream.
Type: builtin_function_or_method
def add_numbers(a, b):
"""
Add two numbers together
Returns
-------
the_sum : type of arguments
"""
return a + b
Then using ? shows us the docstring:
In [11]: add_numbers?
Signature: add_numbers(a, b)
Docstring:
Add two numbers together
Returns
-------
the_sum : type of arguments
File: <ipython-input-9-6a548a216e27>
Type: function
Using ?? will also show the function’s source code if possible:
In [12]: add_numbers??
Signature: add_numbers(a, b)
Source:
def add_numbers(a, b):
"""
Add two numbers together
Returns
-------
the_sum : type of arguments
"""
return a + b
File: <ipython-input-9-6a548a216e27>
Type: function
you also can use wildcard (*) tomatching the expression
In [13]: np.*load*?
np.__loader__
np.load
np.loads
np.loadtxt
np.pkgload
The %run Command
You can run any file as a Python program inside the environment of your IPython
session using the %run command.
In the Jupyter notebook, you may also use the related %load magic function, which
imports a script into a code cell
Executing Code from the Clipboard
In [17]: %paste
Standard IPython keyboard shortcuts Keyboard shortcut Description
Ctrl-P or up-arrow Search backward in command history for commands starting with currently entered text
Ctrl-N or down-arrow Search forward in command history for commands starting with currently entered text
Ctrl-R Readline-style reverse history search (partial matching)
Ctrl-Shift-V Paste text from clipboard
Ctrl-C Interrupt currently executing code
Ctrl-A Move cursor to beginning of line
Ctrl-E Move cursor to end of line
Ctrl-K Delete text from cursor until end of line
Ctrl-U Discard all text on current line
Ctrl-F Move cursor forward one character
Ctrl-B Move cursor back one character
Ctrl-L Clear screen
About Magic Commands
IPython’s special commands (which are not built into Python itself) are known as“magic” commands. These are designed to facilitate common tasks and enable you to easily control the behavior of the IPython system.
In [20]: a = np.random.randn(100, 100)
In [20]: %timeit np.dot(a, a)
10000 loops, best of 3: 20.9 µs per loop
In [21]: %debug?
Docstring:
::
%debug [--breakpoint FILE:LINE] [statement [statement ...]]
Activate the interactive debugger.
In [22]: %pwd
Out[22]: '/home/wesm/code/pydata-book
Table 2-2. Some frequently used IPython magic commands Command Description
%quickref Display the IPython Quick Reference Card
%magic Display detailed documentation for all of the available magic commands
%debug Enter the interactive debugger at the bottom of the last exception traceback
%hist Print command input (and optionally output) history
%pdb Automatically enter debugger after any exception
%paste Execute preformatted Python code from clipboard
%cpaste Open a special prompt for manually pasting Python code to be executed
%reset Delete all variables/names defined in interactive namespace
%page OBJECT Pretty-print the object and display it through a pager
%run script.py Run a Python script inside IPython
%prun statement Execute statement with cProfile and report the profiler output
%time statement Report the execution time of a single statement
%timeit statement Run a statement multiple times to compute an ensemble average execution time; useful for timing code with very short execution time
%who, %who_ls, %whos Display variables defined in interactive namespace, with varying levels of information/verbosity
%xdel variable Delete a variable and attempt to clear any references to the object in the IPython internals
Matplotlib Integration
In the IPython shell
In [26]: %matplotlib
Using matplotlib backend: Qt4Agg
In Jupyter, the command is a little different
In [26]: %matplotlib inline
2.3 Python Language Basics
so easy,something about the grammar of python
if not isinstance(x, list) and isiterable(x):
x = list(x)
Check if the object is a list (or a NumPy array) and, if it is not, convert it to be
Table 2-3. Binary operators Operation Description
a + b Add a and b
a - b Subtract b from a
a * b Multiply a by b
a / b Divide a by b
a // b Floor-divide a by b, dropping any fractional remainder
a ** b Raise a to the b power
a & b True if both a and b are True; for integers, take the bitwise AND
a | b True if either a or b is True; for integers, take the bitwise OR
a ^ b For booleans, True if a or b is True, but not both; for integers, take the bitwise EXCLUSIVE-OR
a == b True if a equals b
a != b True if a is not equal to b
a <= b, a < b True if a is less than (less than or equal) to b
a > b, a >= b True if a is greater than (greater than or equal) to b
a is b True if a and b reference the same Python object
a is not b True if a and b reference different Python objects
Most objects in Python, such as lists, dicts, NumPy arrays, and most user-defined types (classes), are mutable.
Others, like strings and tuples, are immutable
Datetime format specification (ISO C89 compatible)
Type Description
%Y Four-digit year
%y Two-digit year
Type Description
%m Two-digit month [01, 12]
%d Two-digit day [01, 31]
%H Hour (24-hour clock) [00, 23]
%I Hour (12-hour clock) [01, 12]
%M Two-digit minute [00, 59]
%S Second [00, 61] (seconds 60, 61 account for leap seconds)
%w Weekday as integer [0 (Sunday), 6]
%U Week number of the year [00, 53]; Sunday is considered the first day of the week, and days before the first Sunday of the year are “week 0”
%W Week number of the year [00, 53]; Monday is considered the first day of the week, and days before the first Monday of the year are “week 0”
%z UTC time zone offset as +HHMM or -HHMM; empty if time zone naive
%F Shortcut for %Y-%m-%d (e.g., 2012-4-18)
%D Shortcut for %m/%d/%y (e.g., 04/18/12)
python for data analysis 2nd 读书笔记(一)的更多相关文章
- 数据分析---《Python for Data Analysis》学习笔记【04】
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...
- 数据分析---《Python for Data Analysis》学习笔记【03】
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...
- 数据分析---《Python for Data Analysis》学习笔记【02】
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...
- 数据分析---《Python for Data Analysis》学习笔记【01】
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...
- 学习笔记之Python for Data Analysis
Python for Data Analysis, 2nd Edition https://www.safaribooksonline.com/library/view/python-for-data ...
- 《python for data analysis》第五章,pandas的基本使用
<利用python进行数据分析>一书的第五章源码与读书笔记 直接上代码 # -*- coding:utf-8 -*-# <python for data analysis>第五 ...
- 《python for data analysis》第十章,时间序列
< python for data analysis >一书的第十章例程, 主要介绍时间序列(time series)数据的处理.label:1. datetime object.time ...
- 《python for data analysis》第九章,数据聚合与分组运算
# -*- coding:utf-8 -*-# <python for data analysis>第九章# 数据聚合与分组运算import pandas as pdimport nump ...
- 《python for data analysis》第七章,数据规整化
<利用Python进行数据分析>第七章的代码. # -*- coding:utf-8 -*-# <python for data analysis>第七章, 数据规整化 imp ...
随机推荐
- NABCD-课程表开发
N:需求 1.学生录入课程需求. 2.学生对于空教室使用需求(自习或活动占用). 3.学生对于具体课程的查询需求. A:做法 基于安卓课程查询,录入系统. B:好处 1.满足课程表的基本需求 2.便于 ...
- GitLab管理之 - Gitlab 用户管理
1. 移除用户 (1) 使用管理员登陆Gitlab服务器 (2) 点击管理区域 (3) 点击Users. (4)点击[Block User] 2. 添加用户(1)用root 管理员登陆.(2)点击[管 ...
- ansible自动化
一,工具与环境介绍 1.1 ansible简介 批量管理服务器的工具 无需部署agent,通过ssh进行管理 流行的自动化运维工具:https://github.com/ansible/ansib ...
- oracl遇到的问题
使用oracl数据库用 ALTER TABLE Students ADD CONSTRAINT PRINF_NAME_UNIQUE UNIQUE (sname) 添加唯一性约束,出现问题,报错为:a ...
- spring boot 1.x配置,不断完善中
spring boot是典型的约定大于配置,那么很有必要对在开发过程中这些配置做统一的添加记录,以免用到的时候到处搜索,网上的东西又良莠不齐. server.port=8880 微服务注册中心,yml ...
- 【spring】使用spring过程中踩到的坑
这里简单记录一下,学习spring的时候碰过的异常: 异常:org.springframework.beans.factory.BeanDefinitionStoreException: Unexpe ...
- “菜”鸟理解.NET Framework(CLI,CLS,CTS,CLR,FCL,BCL)
既然要学.NET,就要先认识认识她,我不喜欢大段大段文字的东西,自己通过理解,画个图,来看看.NET的沉鱼落雁,闭月羞花之容. 最下层蓝色部分是.NET Framework的基础,也是所有应用软件的基 ...
- JMETER java.net.SocketTimeoutException: Read timed out
将JMETER脚本里的请求超时时间由1000ms 修改为 10000ms,该错误不再出现.
- docker image 详解
docker iamge docker 镜像: [root@localhost ~]# docker image --help Usage: docker image COMMAND 管理镜像 Com ...
- 20175234 2018-2019-2 《Java程序设计》第九周学习总结
目录 20175234 2018-2019-2 <Java程序设计>第九周学习总结 教材学习内容总结 教材学习中的问题和解决过程 代码托管 感想 学习进度条 参考资料 20175234 2 ...