Python 多线程

多线程类似于同时执行多个不同程序,多线程运行有如下优点:

  • 使用线程可以把占据长时间的程序中的任务放到后台去处理。
  • 用户界面可以更加吸引人,这样比如用户点击了一个按钮去触发某些事件的处理,可以弹出一个进度条来显示处理的进度
  • 程序的运行速度可能加快
  • 在一些等待的任务实现上如用户输入、文件读写和网络收发数据等,线程就比较有用了。在这种情况下我们可以释放一些珍贵的资源如内存占用等等。

线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。

每个线程都有他自己的一组CPU寄存器,称为线程的上下文,该上下文反映了线程上次运行该线程的CPU寄存器的状态。

指令指针和堆栈指针寄存器是线程上下文中两个最重要的寄存器,线程总是在进程得到上下文中运行的,这些地址都用于标志拥有线程的进程地址空间中的内存。

  • 线程可以被抢占(中断)。
  • 在其他线程正在运行时,线程可以暂时搁置(也称为睡眠) -- 这就是线程的退让。

开始学习Python线程

Python中使用线程有两种方式:函数或者用类来包装线程对象。

函数式:调用thread模块中的start_new_thread()函数来产生新线程。语法如下:

thread.start_new_thread ( function, args[, kwargs] )

参数说明:

  • function - 线程函数。
  • args - 传递给线程函数的参数,他必须是个tuple类型。
  • kwargs - 可选参数。
import thread
import time # 为线程定义一个函数
def print_time( threadName, delay):
count = 0
while count < 5:
time.sleep(delay)
count += 1
print "%s: %s" % ( threadName, time.ctime(time.time()) ) # 创建两个线程
try:
thread.start_new_thread( print_time, ("Thread-1", 2, ) )
thread.start_new_thread( print_time, ("Thread-2", 4, ) )
except:
print "Error: unable to start thread" while 1:
pass

执行以上程序输出结果如下:

Thread-1: Thu Jan 22 15:42:17 2009
Thread-1: Thu Jan 22 15:42:19 2009
Thread-2: Thu Jan 22 15:42:19 2009
Thread-1: Thu Jan 22 15:42:21 2009
Thread-2: Thu Jan 22 15:42:23 2009
Thread-1: Thu Jan 22 15:42:23 2009
Thread-1: Thu Jan 22 15:42:25 2009
Thread-2: Thu Jan 22 15:42:27 2009
Thread-2: Thu Jan 22 15:42:31 2009
Thread-2: Thu Jan 22 15:42:35 2009

线程的结束一般依靠线程函数的自然结束;也可以在线程函数中调用thread.exit(),他抛出SystemExit exception,达到退出线程的目的。


线程模块

Python通过两个标准库thread和threading提供对线程的支持。thread提供了低级别的、原始的线程以及一个简单的锁。

threading 模块提供的其他方法:

  • threading.currentThread(): 返回当前的线程变量。
  • threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
  • threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。

除了使用方法外,线程模块同样提供了Thread类来处理线程,Thread类提供了以下方法:

  • run(): 用以表示线程活动的方法。
  • start():启动线程活动。
  • join([time]): 等待至线程中止。这阻塞调用线程直至线程的join() 方法被调用中止-正常退出或者抛出未处理的异常-或者是可选的超时发生。
  • isAlive(): 返回线程是否活动的。
  • getName(): 返回线程名。
  • setName(): 设置线程名。

使用Threading模块创建线程

使用Threading模块创建线程,直接从threading.Thread继承,然后重写__init__方法和run方法:

import threading
import time exitFlag = 0 class myThread (threading.Thread): #继承父类threading.Thread
def __init__(self, threadID, name, counter):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.counter = counter
def run(self): #把要执行的代码写到run函数里面 线程在创建后会直接运行run函数
print "Starting " + self.name
print_time(self.name, self.counter, 5)
print "Exiting " + self.name def print_time(threadName, delay, counter):
while counter:
if exitFlag:
(threading.Thread).exit()
time.sleep(delay)
print "%s: %s" % (threadName, time.ctime(time.time()))
counter -= 1 # 创建新线程
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2) # 开启线程
thread1.start()
thread2.start() print "Exiting Main Thread"

以上程序执行结果如下;

Starting Thread-1
Starting Thread-2
Exiting Main Thread
Thread-1: Thu Mar 21 09:10:03 2013
Thread-1: Thu Mar 21 09:10:04 2013
Thread-2: Thu Mar 21 09:10:04 2013
Thread-1: Thu Mar 21 09:10:05 2013
Thread-1: Thu Mar 21 09:10:06 2013
Thread-2: Thu Mar 21 09:10:06 2013
Thread-1: Thu Mar 21 09:10:07 2013
Exiting Thread-1
Thread-2: Thu Mar 21 09:10:08 2013
Thread-2: Thu Mar 21 09:10:10 2013
Thread-2: Thu Mar 21 09:10:12 2013
Exiting Thread-2
线程同步

线程同步

如果多个线程共同对某个数据修改,则可能出现不可预料的结果,为了保证数据的正确性,需要对多个线程进行同步。

使用Thread对象的Lock和Rlock可以实现简单的线程同步,这两个对象都有acquire方法和release方法,对于那些需要每次只允许一个线程操作的数据,可以将其操作放到acquire和release方法之间。如下:

多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。

考虑这样一种情况:一个列表里所有元素都是0,线程"set"从后向前把所有元素改成1,而线程"print"负责从前往后读取列表并打印。

那么,可能线程"set"开始改的时候,线程"print"便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。

锁有两种状态——锁定和未锁定。每当一个线程比如"set"要访问共享数据时,必须先获得锁定;如果已经有别的线程比如"print"获得锁定了,那么就让线程"set"暂停,也就是同步阻塞;等到线程"print"访问完毕,释放锁以后,再让线程"set"继续。

经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。

import threading
import time class myThread (threading.Thread):
def __init__(self, threadID, name, counter):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.counter = counter
def run(self):
print "Starting " + self.name
# 获得锁,成功获得锁定后返回True
# 可选的timeout参数不填时将一直阻塞直到获得锁定
# 否则超时后将返回False
threadLock.acquire()
print_time(self.name, self.counter, 3)
# 释放锁
threadLock.release() def print_time(threadName, delay, counter):
while counter:
time.sleep(delay)
print "%s: %s" % (threadName, time.ctime(time.time()))
counter -= 1 threadLock = threading.Lock()
threads = [] # 创建新线程
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2) # 开启新线程
thread1.start()
thread2.start() # 添加线程到线程列表
threads.append(thread1)
threads.append(thread2) # 等待所有线程完成
for t in threads:
t.join()
print "Exiting Main Thread"

线程优先级队列( Queue)

Python的Queue模块中提供了同步的、线程安全的队列类,包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列LifoQueue,和优先级队列PriorityQueue。这些队列都实现了锁原语,能够在多线程中直接使用。可以使用队列来实现线程间的同步。

Queue模块中的常用方法:

  • Queue.qsize() 返回队列的大小
  • Queue.empty() 如果队列为空,返回True,反之False
  • Queue.full() 如果队列满了,返回True,反之False
  • Queue.full 与 maxsize 大小对应
  • Queue.get([block[, timeout]])获取队列,timeout等待时间
  • Queue.get_nowait() 相当Queue.get(False)
  • Queue.put(item) 写入队列,timeout等待时间
  • Queue.put_nowait(item) 相当Queue.put(item, False)
  • Queue.task_done() 在完成一项工作之后,Queue.task_done()函数向任务已经完成的队列发送一个信号
  • Queue.join() 实际上意味着等到队列为空,再执行别的操作
import Queue
import threading
import time exitFlag = 0 class myThread (threading.Thread):
def __init__(self, threadID, name, q):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.q = q
def run(self):
print "Starting " + self.name
process_data(self.name, self.q)
print "Exiting " + self.name def process_data(threadName, q):
while not exitFlag:
queueLock.acquire()
if not workQueue.empty():
data = q.get()
queueLock.release()
print "%s processing %s" % (threadName, data)
else:
queueLock.release()
time.sleep(1) threadList = ["Thread-1", "Thread-2", "Thread-3"]
nameList = ["One", "Two", "Three", "Four", "Five"]
queueLock = threading.Lock()
workQueue = Queue.Queue(10)
threads = []
threadID = 1 # 创建新线程
for tName in threadList:
thread = myThread(threadID, tName, workQueue)
thread.start()
threads.append(thread)
threadID += 1 # 填充队列
queueLock.acquire()
for word in nameList:
workQueue.put(word)
queueLock.release() # 等待队列清空
while not workQueue.empty():
pass # 通知线程是时候退出
exitFlag = 1 # 等待所有线程完成
for t in threads:
t.join()
print "Exiting Main Thread"
Starting Thread-1
Starting Thread-2
Starting Thread-3
Thread-1 processing One
Thread-2 processing Two
Thread-3 processing Three
Thread-1 processing Four
Thread-2 processing Five
Exiting Thread-3
Exiting Thread-1
Exiting Thread-2
Exiting Main Thread

python大法好——多线程的更多相关文章

  1. Python大法之告别脚本小子系列—信息资产收集类脚本编写(下)

    作者:阿甫哥哥 原文来自:https://bbs.ichunqiu.com/article-1618-1.html 系列文章专辑:Python大法之告别脚本小子系列目录: 0×05 高精度字典生成脚本 ...

  2. python高级之多线程

    python高级之多线程 本节内容 线程与进程定义及区别 python全局解释器锁 线程的定义及使用 互斥锁 线程死锁和递归锁 条件变量同步(Condition) 同步条件(Event) 信号量 队列 ...

  3. python 类变量 在多线程下的共享与释放问题

    最近被多线程给坑了下,没意识到类变量在多线程下是共享的,还有一个就是没意识到 内存释放问题,导致越累越大 1.python 类变量 在多线程情况 下的 是共享的 2.python 类变量 在多线程情况 ...

  4. leetcode-Spiral Matrix II 螺旋矩阵2之python大法好,四行就搞定,你敢信?

    Spiral Matrix II 螺旋矩阵 Given an integer n, generate a square matrix filled with elements from 1 to n2 ...

  5. python中的多线程【转】

    转载自: http://c4fun.cn/blog/2014/05/06/python-threading/ python中关于多线程的操作可以使用thread和threading模块来实现,其中th ...

  6. Python之FTP多线程下载文件之分块多线程文件合并

    Python之FTP多线程下载文件之分块多线程文件合并 欢迎大家阅读Python之FTP多线程下载系列之二:Python之FTP多线程下载文件之分块多线程文件合并,本系列的第一篇:Python之FTP ...

  7. Python之FTP多线程下载文件之多线程分块下载文件

    Python之FTP多线程下载文件之多线程分块下载文件 Python中的ftplib模块用于对FTP的相关操作,常见的如下载,上传等.使用python从FTP下载较大的文件时,往往比较耗时,如何提高从 ...

  8. Python系列之多线程、多进程

    线程是操作系统直接支持的执行单元,因此,高级语言通常都内置多线程的支持,Python也不例外,并且,Python的线程是真正的Posix Thread,而不是模拟出来的线程. Python的标准库提供 ...

  9. Python 简单理解多线程

    进程,是一个或多个线程的集合,每个进程在内存中是相对独立的. 线程,是计算机最小的运算单元,每个进程至少要有一个线程,多个线程时,每个线程间之间共享内存. 分别举例常规运行和多线程运行: 0)常规运行 ...

随机推荐

  1. CSS 关于权重的另类解说

    众所周知,对于CSS中权重的顺序,从大到小依次如下: !important id class 标签 在html标签中写入行内样式style,又大于link引入.相同类型的样式标记,在数量上多的大于数量 ...

  2. JS 实现Table相同行的单元格自动合并示例代码

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <HTML> <HEAD ...

  3. 18.16 gcc-3.4.5编译错误及解决方法集锦

    18.16.1 自写BootLoader错误 ERROR : boot.c:: warning: return type of 'main' is not `int' ANSWER : int mai ...

  4. 19.2 MEMORY CONTROLLER

    在存储控制器的BANKCONTROLREGISTER(BANKCONn: GCS6-nGCS7)表中:中文翻译各个寄存器的位出现错误: 原文中正确的表述见下图:

  5. pycharm2018.11最新激活码

    第一步:先按下键盘的win + r ,然后复制c:\windows\system32\drivers\etc粘贴到对话框回车打开文件管理器: 第二步:打开hosts文件,将0.0.0.0 accoun ...

  6. PHP-不同Str 拼接方法性能对比 参考自https://www.cnblogs.com/xiaoerli520/p/9624309.html

    问题 在PHP中,有多种字符串拼接的方式可供选择,共有: 1 . , .= , sprintf, vprintf, join, implode 那么,那种才是最快的,或者那种才是最适合业务使用的,需要 ...

  7. http请求返回响应码及意义

    http 响应码及意义 HTTP状态码(HTTP Status Code)是用以表示网页服务器HTTP响应状态的3位数字代码.它由 RFC 2616 规范定义的,并得到RFC 2518.RFC 281 ...

  8. MySQL死锁分析一例

    Tomcat日志报死锁错误,show innodb status获取死锁信息: ------------------------ LATEST DETECTED DEADLOCK ---------- ...

  9. Azure CosmosDB (7) 分区键Partition Key

    <Windows Azure Platform 系列文章目录> Azure Cosmos DB使用分区键(Partition Key),来对数据进行水平缩放(Horizon Scale), ...

  10. 【java】之位运算^,&,<<,>>,<<<,>>>总结

    1.^(亦或运算) ,针对二进制,相同的为0,不同的为1 public static void main(String[] args) { System.out.println("2^3运算 ...