ExaWizards 2019
AB:div 3 AB???
C:div 1 C???场内自闭的直接去看D。事实上是个傻逼题,注意到物品相对顺序不变,二分边界即可。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 200010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,a[N],tot;
char s[N],b[N];
bool check(int k,int op)
{
for (int i=1;i<=m;i++)
if (b[i]==s[k])
{
if (a[i]==0) k--;
else k++;
if (k==0)
{
if (op==0) return 1;
else return 0;
}
if (k==n+1)
{
if (op==1) return 1;
else return 0;
}
}
return 0;
}
signed main()
{
tot=n=read(),m=read();
scanf("%s",s+1);
for (int i=1;i<=m;i++)
{
b[i]=getc();a[i]=getc()=='R';
}
int l=1,r=n,ans=0;
while (l<=r)
{
int mid=l+r>>1;
if (check(mid,0)) ans=mid,l=mid+1;
else r=mid-1;
}
tot-=ans;
l=1,r=n;ans=n+1;
while (l<=r)
{
int mid=l+r>>1;
if (check(mid,1)) ans=mid,r=mid-1;
else l=mid+1;
}
tot-=n+1-ans;
cout<<tot;
return 0;
//NOTICE LONG LONG!!!!!
}
D:显然对小模数取模后,大模数不会再产生影响。于是将模数从大到小排序,设f[i][j]为考虑了前i大模数后当前值是j的概率,转移考虑第i个模数是否在前缀单调栈中,若在则转移对其取模,在栈中相当于其要在比它小的所有数的前面,概率显然为1/(n-i+1)。场上莫名其妙的认为这个概率是1/(n-i+1)!,然后就自闭了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 210
#define M 100010
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,a[N],f[N][M],fac[N],inv[N];
signed main()
{
freopen("d.in","r",stdin);
freopen("d.out","w",stdout);
n=read(),m=read();
for (int i=1;i<=n;i++) a[i]=read();
sort(a+1,a+n+1);reverse(a+1,a+n+1);
fac[0]=1;for (int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%P;
inv[0]=inv[1]=1;for (int i=2;i<=n;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P;
f[0][m]=1;
for (int i=1;i<=n;i++)
{
for (int j=0;j<=m;j++)
{
f[i][j]=(f[i][j]+1ll*f[i-1][j]*(P+1-inv[n-i+1]))%P;
f[i][j%a[i]]=(f[i][j%a[i]]+1ll*f[i-1][j]*inv[n-i+1])%P;
}
}
int ans=0;
for (int j=0;j<=m;j++) ans=(ans+1ll*f[n][j]*fac[n]%P*(j%a[n]))%P;
cout<<ans;
return 0;
//NOTICE LONG LONG!!!!!
}
E:最后5分钟才看这个题,然后发现是个一眼题。考虑黑白球哪个先被拿完,不妨设是白球,然后见注释。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define P 1000000007
#define N 200010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,f[N],fac[N],inv[N];
int ksm(int a,int k)
{
int s=1;
for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P;
return s;
}
int Inv(int a){return ksm(a,P-2);}
int C(int n,int m){if (m>n) return 0;return 1ll*fac[n]*inv[m]%P*inv[n-m]%P;}
signed main()
{
freopen("e.in","r",stdin);
freopen("e.out","w",stdout);
n=read(),m=read();
fac[0]=fac[1]=1;for (int i=1;i<=n+m;i++) fac[i]=1ll*fac[i-1]*i%P;
inv[0]=inv[1]=1;for (int i=2;i<=n+m;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P;
for (int i=2;i<=n+m;i++) inv[i]=1ll*inv[i-1]*inv[i]%P;
for (int i=m;i<n+m;i++)
{
int p=1ll*C(i-1,m-1)*Inv(ksm(2,i))%P;
f[1]=(f[1]+1ll*(i-m)*Inv(i-1)%P*p)%P;
f[i]=(f[i]+P-1ll*(i-m)*Inv(i-1)%P*p%P)%P;
f[i+1]=(f[i+1]+p)%P;
}
for (int i=n;i<n+m;i++)
{
int p=1ll*C(i-1,n-1)*Inv(ksm(2,i))%P;
f[1]=(f[1]+1ll*(n-1)*Inv(i-1)%P*p)%P;
f[i]=(f[i]+P-1ll*(n-1)*Inv(i-1)%P*p%P)%P;
f[i]=(f[i]+p)%P;
f[i+1]=(f[i+1]+P-p)%P;
}
//白球是在第i次被拿完的 之前黑白球都存在 则每次拿黑白球概率均等 其概率为C(i-1,m-1)/2^i
//考虑该情况下第j次拿黑球的概率 显然第i次不可能
//对j<i和j>i分别考虑
//j<i时,概率为(i-m)/(i-1)
//j>i时,概率为1
//若白球是最后一次被拿完的 再考虑黑球是什么时候被拿完的
//类似
for (int i=1;i<=n+m;i++) f[i]=(f[i]+f[i-1])%P;
for (int i=1;i<=n+m;i++) printf("%d\n",f[i]);
return 0;
//NOTICE LONG LONG!!!!!
}
F:咕
ExaWizards 2019的更多相关文章
- 【AtCoder】ExaWizards 2019
ExaWizards 2019 C - Snuke the Wizard 发现符文的相对位置不变,直接二分某个位置是否到达最左或最右来计算 #include <bits/stdc++.h> ...
- AtCoder ExaWizards 2019 简要题解
AtCoder ExaWizards 2019 简要题解 Tags:题解 link:https://atcoder.jp/contests/exawizards2019 很水的一场ARC啊,随随便便就 ...
- ExaWizards 2019 English D - Modulo Operations(DP)
Time Limit: 2 sec / Memory Limit: 1024 MB Score : 600600 points Problem Statement Snuke has a blackb ...
- AtCoder ExaWizards 2019 D Modulo Operations
题意 给出一个长度为\(n\)的数列和数字\(X\),对于数列的每一种排列,其权值\(X\)依次对排列中的数取模,求出\(n!\)种情况最后剩下的数的权值和 分析 如果大的数字排在小的数字后面,那么大 ...
- Solution -「ExaWizards 2019 C」Snuke and Wizards
\(\mathcal{Description}\) Link. 给定一个长度为 \(n\) 的字符串 \(s\),每个字符上初始有一张卡片.\(q\) 次操作,每次指定 \(s\) 中字符为 ...
- yyb省选前的一些计划
突然意识到有一些题目的计划,才可以减少大量查水表或者找题目的时间. 所以我决定这样子处理. 按照这个链接慢慢做. 当然不可能只做省选题了. 需要适时候夹杂一些其他的题目. 比如\(agc/arc/cf ...
- AtCoder 神题汇总
记录平时打 AtCoder 比赛时遇到的一些神题. Tenka1 Programmer Contest 2019 D Three Colors 题目大意 有 $n$ 个正整数 $a_1, a_2,\d ...
- AtCoder整理(持续更新中……)
做了那么久的atcoder觉得自己的题解发的很乱 给有想和我一起交流atcoder题目(或者指出我做法的很菜)(或者指责我为什么整场比赛只会抄题解)的同学一个索引的机会??? 于是写了个爬虫爬了下 A ...
- 2019年台积电进军AR芯片,将用于下一代iPhone
近日,有报道表示台积电10nm 芯片可怜的收益率可能会对 2017 年多款高端移动设备的推出产生较大的影响,其中自然包括下一代 iPhone 和 iPad 机型.不过,台积电正式驳斥了这一说法,表明1 ...
随机推荐
- 【译】参考手册-React组件
react version: 15.4.2 React.Component 组件能够让你将UI拆分为多个独立自治并可重用的部分.在 React 中提供了 React.Component. 概述 Rea ...
- Java虚拟机性能监测工具Visual VM与OQL对象查询语言
1.Visual VM多合一工具 Visual VM是一个功能强大的多合一故障诊断和性能监控的可视化工具,它集成了多种性能统计工具的功能,使用 Visual VM 可以代替jstat.jmap.jha ...
- Vue(一)之ES6基础
01-先了解ES6语法 1.声明变量let和const <script type="javascript"> //es5声明变量 var 先声明,后赋值 //var a ...
- python知识点及面试面试大集合
题目来源:武sir--一个很有意思的人,点击这儿跳转 一.基础篇 为什么学习Python? 通过什么途径学习的Python? Python和Java.PHP.C.C#.C++等其他语言的对比? 简述解 ...
- ImageProcessor组件
ImageProcessor组件 开源免费的.NET图像即时处理的组件ImageProcessor 承接以前的组件系列,这个组件系列旨在介绍.NET相关的组件,让大家可以在项目中有一个更好的选择, ...
- marMariaDB & MYSQL flexviews
Using Flexviews - part one, introduction to materialized views - Percona Database Performance Bloght ...
- Linux下设置MySql自动启动
https://www.cnblogs.com/sunny3096/p/7954146.html
- Mongo安装与使用
MongoDB[1] 是一个基于分布式文件存储的数据库.由C++语言编写.旨在为WEB应用提供可扩展的高性能数据存储解决方案. mongoDB MongoDB[2] 是一个介于关系数据库和非关系数 ...
- 【学亮IT手记】jQuery each()函数用法实例
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <script sr ...
- mybatis事务管理机制详解
1.mybatis事务的配置和使用 mybatis事务有两种使用方式: (a):使用JDBC的事务管理机制:即使用java.Sql.Connection对象完成对事务的提交,回滚和关闭操作. (b): ...