关于I2C与SMBus,许多人很少去谈论与了解两者的细节差异,包括很多国外的简报,文章也经常将两者混写、交杂描述、交替运用。

确实,在一般运用下,I2C Bus与SMBus没有太大的差别,从实际接线上看也几乎无差异,甚至两者直接相连多半也能相安无误地正确互通并运作。不过若真要仔细探究,其实还是有诸多不同,如果电子设计工程师不能明辨两者的真实差异,那么在日后的开发设计的验证纠错阶段必然会产生困扰,为此本文将从各层面来说明I2CBus与SMBus的细微区别,期望能为各位带来些许帮助。

运用背景、版本演进之别

首先从规格的制订背景开始,I2C是在设计电视应用时所研发的界面,首版于1992 年发表;而SMBus(System Management Bus)则是Intel与Duracell(金顶电池)共同制订笔记本电脑所用的智能型电池(Smart Battery)时所研发的接口,首版于1995 年发表,不过SMBus文件中也提及,SMBus确实是参考自I2C,并以I2C为基础所衍生成。

I2C起源于电视设计,但之后朝通用路线发展,各种电子设计都有机会用到I2C;而SMBus则在之后为PC所制订的先进组态与电源管理接口(AdvancedConfiguration & Power Interface;ACPI)规范中成为基础的管理讯息传递接口、控制传递接口。

虽然I2C与SMBus先后制订时间不同,但都在2000年左右进入成熟化改版,I2C的过程改版以加速为主要诉求,而SMBus以更切合Smart Battery及ACPI的需求为多。

I2C三次主要改版:

1992 年v1.0

1998 年v2.0

2000 年v2.1

SMBus三次主要改版:

1995 年v1.0

1998 年v1.1

2000 年v2.0

电气特性差异:逻辑电平定义、限流、相关限制

I2C的Hi/Lo逻辑电平有两种认定法:相对认定与绝对认定,相对认定是依据Vdd的电压来决定,Hi为0.7Vdd,Lo为0.3Vdd,绝对认定则与TTL 准位认定相同,直接指定Hi/Li电压,Hi为3.0V,Lo为1.5V。相对的SMBus只有绝对认定,且电平与I2C有异,Hi为2.1V,Lo为0.8V,与I2C不全然吻合但也算部分交集。

不过,SMBus后来也增订一套更低电压的电平认定,Hi为1.4V,Lo为0.6V,这是为了让运用SMBus的装置能更省成本的作法。

了解电压后再来是电流,由于SMBus一开始就是运用在笔记本电脑内,所以省电的表现优于I2C,只需100uA就能维持工作,I2C却要到3mA同样的低用电特性也反应在漏电流(Leakage Current)的要求上,I2C最大的漏电流为10uA,SMBus为1uA,但是1uA似乎过度严苛,使运用SMBus的装置在验证测试时耗费过多的成本与心力,因此之后的SMBus 1.1版放宽了漏电流上限,最高可至5uA。

再者是相关限制,I2C有线路电容的限制,SMBus却没有,但也有相类似的配套规范,即是电平下拉时的电流限制,当SMBus的集电极开路Pin导通而使线路接地时,流经接地的电流不能高于350uA,另上电流(即相同的集电极开路Pin开路时)也一样有规范,最小不低于100uA,最高也是不破350uA的。

既然对电流有限制,那么也可容易地推断对上拉电阻的阻值之范围要求,I2C 在5V Vdd时当大于1.6kohm,在3V Vdd时当大于1kohm,类似的SMBus于5V Vdd时当大于14kohm,3V Vdd时当大于8.5kohm,不过这个定义并非牢不可破,就一般实务而言,在SMBus上也可用2.4k〜3.9kohm范畴的阻值。

附注:I2C的时钟线称SCK或SCL,数据线称SDA。SMBus的时钟线称SMBCLK,数据线称SMBDAT。

I2C与SMBus 在逻辑位准的电压定义不尽相同,基本上I2C的定义较为宽裕、弹性,而SMBus 则更专注在省电方面的要求。

时序差别与考验

物理层面的空间要求完后,再来就是物理层面的时间,即是时序(Timing)方面的差别。

先以运作频率来说,I2C此方面相当宽裕,最低频可至0Hz(直流状态,等于时间暂停),高可至100kHz(Standard Mode)、400kHz(Fast Mode)、乃至3.4MHz(High Speed Mode),相对的SMBus就很局限,最慢不慢于10kHz,最快不快于100kHz。很明显的,I2C与SMBus的交集运作频率即是10kHz〜100kHz间。

用于笔记本电脑的电池管理或PC组态管理、用电管理的SMBus,很容易体会不需要更高运作频率的理由,只要传递小数据量的监督信息、控制指令本就不用过于高速,而朝向广泛运用的I2C自然希望用更高的传输以应对各种可能的需求。然而大家可能会疑惑,为何SMBus有最低速的要求?何不放宽到与I2C相同的无最低速限制呢?

SMBus一定要维持10kHz以上的运作频率,主要也是为了管理监控,另一个用意是只要在保持一定传速运作的情况下加入参数,就可轻松获知总线目前是否处于闲置(Idle)中,省去逐一侦测传输过程中的停断(STOP)信号,或持续保有停断侦测并辅以额外参数侦测,如此对总线闲置后的再取用会更有效快速。

传速要求之后还有数据保持时间(Data Hold Time)的要求,SMBus 规定SMBCLK线路的电平下降后,SMBDAT上的数据必须持续保留300nS,但I2C 却没有对此有相同的强制要求。

类似的,SMBus对接口被重置(Reset)后的恢复时间(Timeout)也有要求,一般而言是35mS,I2C这方面亦无约束,可以任意延长时间。相同的SMBus也要求无论是在主控端(Master)或受控端(Slave),其频率处于Lo电平时的最长持续时间不得超越限制,以免因为长时间处在Lo准位,而致收发两端时序脱轨(失去同步,造成后续误动作)。

还有,I2C与SMBus在信号的上升时间、下降时间等也有不同的细节要求,此点必要时也必须进行确认,或在验证过程中稍加留意。

Smart Battery或ACPI的实现、监督、与操控,最底层都需要SMBus(圈处)作为后援,图为简易的多组式智能型电池系统,图中有Smart Battery A、B 两组电池。

「已妥」与「未妥」机制的强制性差别

不单是电气、时序有别,更深层次的协议机制也有不同。在I2C中,主控端发送端(主控端)要与接收端(受控端)通讯前,会在总线上广播受控端的地址信息,每个接收端都会接收到地址信息,但只有与该地址信息相切合的接收端会在地址信息发布完后发出「已妥」的回应(Acknowledge;ACK),让发送端知道对应的接收端确实已经备妥,可以进行通讯。

但是,I2C并没有强制规定接收端非要做出响应不可,也可以默不作声,即便默不作声,发送端还是会继续工作,开始进行数据传递及下达读/写指令,如此的机制在一般运用中还是可行,但若是在一些实时(Real Time)性的应用上,任何的动作与机制都有一定的时限要求,这种可有可无式的响应法就会产生问题,可能会导致受控端无法接收信息。

相同的情形,在SMBus上是不允许接收端在接收地址信息后却不发出回应,每次都要回应,为何要强制回应?其实与SMBus的应用息息相关,SMBus上所连接的受控装置有时是动态加入、动态移除的,例如换装一颗新电池,或笔记本电脑接上DOCK PORT等,如果接入的装置已经改变却没有回应,则主控端的程序所掌握的并非是整体系统的最新组态,就会造成误动作。

类似的情形也适用于ACPI,PC机内机外经常有一些装置可动态增入、移除,如机内风扇、外接打印机等,这些也一样该强制对主控端群发(广播)的地址信息作出完整响应。

地址动作方面有异,数据传输方面也有异。在I2C方面,Slave虽然对Master 所发出的地址作出响应,但在后续的数据传递中,可能因某些事务必须先行处理、因应而无法持续原有的传输,这时候Slave就要对Master发出「未妥」的回应(Not Acknowledge;NACK),向Master 表示Slave正为他务忙碌中。

而SMBus方面,与I2C相同的,会以NACK的回讯向Master表达Slave尚未收妥传递的信息,但是SMBus的Slave会在后续的每个Byte传输中都发出NACK回信,这样设计的原因是因为SMBus没有其他可向Master要求重发(Resend)的表示法。更直接说就是:NACK机制是SMBus标准中的强制必备,任何的讯息传递都很重要,不允许有漏失。

I2C在完成一段地址或数据信息的传输后,受接端可发出讯息收妥(ACK)、未妥(NACK的响应,SMBus也具相同的机制,但由于应用之故有更强制的回显请求。

传输协议的子集、超集

互动知会机制上有强制与否的差别,协议方面也是。SMBus的通讯协议与协议中所用的讯息格式,其实只是取自I2C 规范中,对于数据传输格式定义中的子集合(Subset)而已。所以,如果将I2C与SMBus交混连接,则I2C装置在存取SMBus装置时,只能使用SMBus范畴的协议与格式,若使用I2C的标准存取方式反而无法正确存取。

另外,I2C规范中有一种称为「General Call」的广呼方式,当发出「0000000」的地址信息后,所有I2C上的Slave装置统统要对此作出反应,此机制适合用在Master要对所有的Slave进行广播性讯息更新与沟通上,是一种总体、批次的运作方式。

SMBus一样有General Call机制,但在此之外SMBus还多了一种特用的ALERT(警讯)机制,不过这必须于频率线与数据线外再追加一条线(称为:SMBSUS)才能实现,ALERT虽名为警讯但其实是中断(Interrupt)的用意,Slave可以将SMBSUS线路的电位拉低(ALERT#,#表示低电平有效),这时就等于向Master发出一个中断警讯,要求Master尽速为某一Slave提供传输服务。

Master要响应这个服务要求,是透过I2C/SMBus的频率线与数据线来通讯,但要如何知道此次的通讯只是Master对Slave的一般性通讯?还是特别针对Slave的中断需求而有的服务响应?

这主要是透过Master发出的地址信息来区别,若为回应中断的服务,地址信息必然是「0001100」,当Slave接收到「0001100」的地址信息,就知道这是Master特为中断而提供的服务通讯。

因此,软件工程师须留心,规划时必须让所有的Slave都不能占用「0001100」这个地址,以供ALERT机制运用(当然!若现在与未来都不会用上ALERT机制则可尽管占用)。事实上各种进阶的规范标准(如Smart Battery、ACCESS.bus、VESA DDC 等)都在I2C的短寻址中订立了一些为自用而保留的地址,这在最初设计与定义时就该有所留意,以免因先行占用而导致日后须改写软件的麻烦。

补充提醒的是,SMBSUS一样是开集电极外加上拉电阻的线路,所以有一个Slave将电位拉下后,其余Slave侦测到电位被拉下,表示已有Slave正在与Master进行中断需索与响应服务,须等待抢到中断服务权的Slave确实被服务完毕,重新将SMBSUS释放回高电平后,才能持续以「看谁能先将线路电平拉低?」的方式来争取中断服务

I2C与SMBus的更多相关文章

  1. PCIE、UART、HDA、I2C、SMBUS、SPI、eSPI、USB、PS2、CAN、SDIO等数据传输协议简介

    M.2 wife一般支持USB.SDIO.PCIE三种传输 1.摄像头 (1)MIPI CSI (2)USB mipi摄像头模组IC简单便宜(小),应为一般把ADC解码在CPU端. MIPI摄像头简介 ...

  2. PCIE、UART、I2C、SMBUS、SPI、eSPI、USB、PS2、CAN、SDIO等数据传输协议

    M.2 wife一般支持USB.SDIO.PCIE三种传输

  3. SMBus与I2C的差别

    The I²C bus and the SMBus are popular 2-wire buses that areessentially compatible with each other. - ...

  4. Linux I2C设备驱动编写(一)

    在Linux驱动中I2C系统中主要包含以下几个成员: I2C adapter 即I2C适配器 I2C driver 某个I2C设备的设备驱动,可以以driver理解. I2C client 某个I2C ...

  5. 【转】Linux I2C设备驱动编写(一)

    原文网址:http://www.cnblogs.com/biglucky/p/4059576.html 在Linux驱动中I2C系统中主要包含以下几个成员: I2C adapter 即I2C适配器 I ...

  6. I2C(三) linux3.4(内核分析)

    目录 I2C(三) linux3.4(内核分析) (一)总线流程 bus.probe match i2c_device_probe (二)client注册 方式(一)静态加载 方式(二)指定设备 方式 ...

  7. SPI、I2C、UART、I2S、GPIO、SDIO、CAN 简介

    转自http://sanwen.net/a/fmxnjoo.html SPI.I2C.UART.I2S.GPIO.SDIO.CAN,看这篇就够了 总线 总线,总要陷进里面.这世界上的信号都一样,但是总 ...

  8. SPI、I2C、UART、I2S、GPIO、SDIO、CAN

    总线,总线,总要陷进里面.这世界上的信号都一样,但是总线却成千上万,让人头疼. 总的来说,总线有三种:内部总线.系统总线和外部总线.内部总线是微机内部各外围芯片与处理器之间的总线,用于芯片一级的互连: ...

  9. SMBus总线概述

    1.概述: 系统管理总线是一种两线制接口.它基于I2C 总线原理演变而来,可以认为是简化版的I2C总线. SMBus最初是应用到智能电池,如电池充电器和一个微控制器.其提供一个系统和电源管理相关的任务 ...

随机推荐

  1. 2、Redis 底层原理:Cluster 集群部署与详解

    Redis 简介 Redis 提供数据缓存服务,内部数据都存在内存中,所以访问速度非常快. 早期,Redis 单应用服务亦能满足企业的需求.之后,业务量的上升,单机的读写能力满足不了业务的需求,技术上 ...

  2. MySQL计算年龄

    SELECT TIMESTAMPDIFF(YEAR, birthday, now()) FROM person2;

  3. 关于matlab2018a版本错误使用 svmclassify 分类器

    当我们照常使用分类器函数svmclassify时,2018版的matlab会报出以下错误: 解决办法: 1,下载libsvm(一般下载最新版本就ok了)包,并将其添加至matlab的toolbox文件 ...

  4. 基于wepy和云开发的动漫资讯小程序----233次元

    233次元小程序 # 233次元小程序 项目描述- 基于微信小程序的动漫咨询小程序,采用`wepy`框架开发:- 后台数据采用小程序的云开发存储: 线上体验 部分截图                 ...

  5. JS禁用浏览器前进后退

    <script language="javascript"> //防止页面后退 history.pushState(null, null, document.URL); ...

  6. Machine.config 文件中节点<machineKey>的强随机生成

    Machine.config 文件中节点<machineKey>的强随机生成 <machineKey>这个节允许你设置用于加密数据和创建数字签名的服务器特定的密钥.ASP.NE ...

  7. Xeon Phi 《协处理器高性能编程指南》随书代码整理 part 4

    ▶ 第五章,几个优化 ● 代码 #include <stdio.h> #include <stdlib.h> #include <math.h> #define S ...

  8. JVM运行、类加载的全过程

    类加载机制:JVM把CLASS文件加载到内存,并对数据进行校验.解析和初始化,最终形成JVM可以直接使用的Java文件. 加载:把class文件字节码加载到内存中,并且将这些静态数据转换成方法区中的运 ...

  9. [JavaScript,Java,C#,C++,Ruby,Perl,PHP,Python][转]流式接口(Fluent interface)

    原文:https://en.m.wikipedia.org/wiki/Fluent_interface(英文,完整) 转载:https://zh.wikipedia.org/wiki/流式接口(中文, ...

  10. JEECG 3.7.8 新版表单校验提示风格使用&升级方法(validform 新风格漂亮,布局简单)

    JEECG 表单校验采用的是validform,默认的校验提示需要占用页面布局,提示效果较传统.jeecg这个自定义的校验提示风格,不占用页面布局,提示效果也更美观,简单易用,让表单看起来更漂亮!!! ...