COGS 2392 2393 2395 有标号的二分图计数
有黑白关系:
枚举左部点(黑色点),然后$2^{i*(n-i)}$处理方法同:COGS 2353 2355 2356 2358 有标号的DAG计数
无关系:
发现,假设$f(i)$是一个连通块,对于一个连通块,变成无颜色的,除以二即可
由结论COGS 2353 2355 2356 2358 有标号的DAG计数:G,F为EGF,$G=ln F$
所以方案就是:$e^{\frac{lnF}{2}}$
至于连通的话,不用exp就可以了
COGS 2392 2393 2395 有标号的二分图计数的更多相关文章
- COGS 有标号的二分图计数系列
其实这三道题都是不错的……(虽然感觉第三题略套路了……) 分别写一下做法好了…… COGS2392 有标号的二分图计数 I 这个就很简单了,Noip难度. 显然可以直接认为黑点和白点分别位于二分图两侧 ...
- cogs [HZOI 2015]有标号的二分图计数
题目分析 n个点的二分染色图计数 很显然的一个式子 \[ \sum_{i=0}^n\binom{n}{i}2^{i(n-i)} \] 很容易把\(2^{i(n-i)}\)拆成卷积形式,前面讲过,不再赘 ...
- cogs 2355. [HZOI 2015] 有标号的DAG计数 II
题目分析 来自2013年王迪的论文<浅谈容斥原理> 设\(f_{n,S}\)表示n个节点,入度为0的点集恰好为S的方案数. 设\(g_{n,S}\)表示n个节点,入度为0的点集至少为S的方 ...
- COGS 2353 2355 2356 2358 有标号的DAG计数
不用连通 枚举入度为0的一层 卷积 发现有式子: 由$n^2-i^2-(n-i)^2=2*i*(n-i)$ 可得$2^{i*(n-i)}=\frac{{\sqrt 2}^{(n^2)}}{{\sqrt ...
- COGS 2396 2397 [HZOI 2015]有标号的强连通图计数
题意:求n个点有向图其中SCC是一个的方案数 考虑求出若干个不连通的每个连通块都是SCC方案数然后再怎么做一做.(但是这里不能用Ln,因为推不出来) 设$f_n$为答案, $g_n$为n个点的有向图, ...
- 有标号的DAG计数(FFT)
有标号的DAG计数系列 有标号的DAG计数I 题意 给定一正整数\(n\),对\(n\)个点有标号的有向无环图(可以不连通)进行计数,输出答案\(mod \ 10007\)的结果.\(n\le 500 ...
- COGS2356 【HZOI2015】有标号的DAG计数 IV
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图进行计数. 这里加一个限制:此图必须是弱连通图. 输出答案mod 998244353的结果 输入格式 一个正整数n. 输出格式 一个数,表示答 ...
- COGS2355 【HZOI2015】 有标号的DAG计数 II
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 998244353的结果 输入格式 一个正整数n 输出格式 一个数,表示答案 样例输入 3 样例输出 ...
- 【题解】有标号的DAG计数4
[HZOI 2015] 有标号的DAG计数 IV 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln),然 ...
随机推荐
- Oracle条件判断if...elsif
- 【开讲啦】20181029 oracle教学笔记
--创建表空间 create tablespace waterboss--表空间名称 datafile 'd:\waterboss.dbf'--用于设置物理文件名称 size 100m--用于设置表空 ...
- 用户认证--------------auth模块
一.auth模块 from django.contrib import auth 1 .authenticate() :验证用户输入的用户名和密码是否相同 提供了用户认证,即验证用户名以及密码是否 ...
- 使用 idea 产生错误The server time zone value 'Öйú±ê׼ʱ¼ä' is unrecognized
解决方法 spring.datasource.url=jdbc:mysql://localhost:3306/spring_cache?serverTimezone=GMT%2B8
- hive自定义函数
- jenkins中通过execute shell启动的进程会被杀死的问题
在jenkins中配置自动更新部署项目时,如果采取用execute shell启动/关闭tomcat,会发现可以进行关闭tomcat, 但是无法启动tomcat,虽然构建会显示执行成功,但是查看进程, ...
- Java多线程2:线程的使用及其生命周期
一.线程的使用方式 1.继承Thread类,重写父类的run()方法 优点:实现简单,只需实例化继承类的实例,即可使用线程 缺点:扩展性不足,Java是单继承的语言,如果一个类已经继承了其他类,就无法 ...
- Vue插件plugins的基本操作
前面的话 本文将详细介绍Vue插件plugins的基本操作 开发插件 插件通常会为 Vue 添加全局功能.插件的范围没有限制——一般有下面几种: 1.添加全局方法或者属性,如: vue-custom- ...
- 鼠标事件-MouseEvent
当鼠标进行某种操作时,就会生成一个event对象,该对象记录着鼠标触发事件时的所有属性. 可以通过如下方法在google控制台打印出 MouseEvent 对象. function mouseDown ...
- 第三方登陆——QQ登陆详解
申请地址 QQ互联:https://connect.qq.com/index.html 腾讯开放平台:https://open.tencent.com/ 注册账号 登陆 进入QQ互联,点击登陆 资料填 ...