预备知识:二叉查找树、堆(heap)、平衡二叉树(AVL)的基本操作(左旋右旋)

定义:

Treap。平衡二叉树。Tree+Heap。树堆。

  1. 每个结点两个键值(key、priority)。
  2. 性质1. Treap是关于key的二叉排序树。
  3. 性质2. Treap是关于priority的堆。(非二叉堆,因为不是完全二叉树)
  4. 结论1. key和priority确定时,treap唯一。
  5. 作用1. 随机分配的优先级,使数据插入后更不容易退化为链。就像是将其打乱再插入。所以用于平衡二叉树。

基本操作

要满足它的两个性质,先让它满足二叉排序树的性质,再通过左旋或右旋,来满足堆的性质。

左旋:

下面代码仅为理解用,板子的话就不一样啦:

void Zag(Treap &T){
Treap Q=T->right;
T->right=Q->left;
Q->left=T;
T=Q;
}

右旋:

void Zig(Treap &T){
Treap Q=T->left;
T->left=Q->right;
Q->right=T;
T=Q;
}

插入

  1. 分配一个优先级(用一个随机函数)
  2. 和二叉查找树一样把新结点当叶子插入
  3. 插入后,若破坏堆性质,就把优先级高的旋转上来

复杂度:最多操作次数为树的高度,即O(h),高度期望值=O(logn),故复杂度为O(logn)

删除

优先级有定义(就是key对应的priority不改变):

​ 把要删除的旋转(把俩孩子里优先级高的旋转上来),直到只有一个孩子或者无孩子,直接删去,孩子直接代替自己。

复杂度:旋转1次是O(1),最多h次旋转,故为O(logn)

优先级随机设定:

​ 和普通二叉树删除操作一样,把直接后继或前继结点交换上来,然后删去后续结点。

复杂度:查找直接后继最多O(h),故也是O(logn)

模板

#include <cstdio>
#include <cstdlib>
#define N 100005 using namespace std; int cnt=1,rt=0; //节点编号从1开始
struct Treap{
int key, pri, size, son[2]; //保证父亲的pri大于儿子的pri
}T[N];
void rotate(int p, int &x){
int y=T[x].son[!p];
T[x].size=T[x].size-T[y].size+T[T[y].son[p]].size;
T[x].son[!p]=T[y].son[p];
T[y].size=T[y].size-T[T[y].son[p]].size+T[x].size;
T[y].son[p]=x;
x=y;
}
//插入,调用ins(key,rt)
void ins(int key, int &x){
if(x == 0)
T[x = cnt++]=(Treap){key,rand(),1};
else{
T[x].size++;
int p=key < T[x].key;
ins(key, T[x].son[!p]);
if(T[x].pri < T[T[x].son[!p]].pri)
rotate(p, x);
}
}
//删除,调用del(key,rt)
void del(int key, int &x){
if(T[x].key == key){
if(T[x].son[0] && T[x].son[1]){
int p=T[T[x].son[0]].pri > T[T[x].son[1]].pri;
rotate(p, x);
del(key, T[x].son[p]);
}
else
x=T[x].son[0]?T[x].son[0]:T[x].son[1];
}else{
T[x].size--;
int p=T[x].key > key;
del(key, T[x].son[!p]);
}
}
//找出第p小的节点的编号,第p小的值为T[find(p,rt)].key
int find(int p, int x){
if(p == T[T[x].son[0]].size+1)
return x;
if(p > T[T[x].son[0]].size+1)
return find(p-T[T[x].son[0]].size-1, T[x].son[1]);
else
return find(p, T[x].son[0]);
}
//找出值小于等于key的节点个数
int find_NoLarger(int key, int x){
if(x == 0)
return 0;
if(T[x].key <= key)
return T[T[x].son[0]].size+1+find_NoLarger(key, T[x].son[1]);
else
return find_NoLarger(key, T[x].son[0]);
} int main(){
srand(19970502);
return 0;
}

模板练手题:http://poj.org/problem?id=1442

Treap树 笔记的更多相关文章

  1. bzoj2141 树状数组套Treap树

    题目大意是在能够改变两个数的位置的情况下计算逆序对数 这因为是动态记录逆序对 本来单纯逆序对只要用树状数组计算即可,但这里因为更新,所以利用TReap树的删点和增加点来进行更新 大致是把每个树状数组所 ...

  2. treap树模板

    ///treap树模板 typedef struct Node ///节点的结构体 { Node *l,*r; int val,pri; ///节点的值和优先级 int sz; ///节点子树的节点数 ...

  3. poj 2761 Feed the dogs (treap树)

    /************************************************************* 题目: Feed the dogs(poj 2761) 链接: http: ...

  4. treap树---营业额统计

    台州学院  2924 描述 Tiger最近被公司升任为营业部经理,他上任后接受公司交给的第一项任务便是统计并分析公司成立以来的营业情况.Tiger拿出了公司的账本,账本上记录了公司成立以来每天的营业额 ...

  5. treap树---Double Queue

    HDU   1908 Description The new founded Balkan Investment Group Bank (BIG-Bank) opened a new office i ...

  6. Treap树

    Treap树算是一种简单的优化策略,这名字大家也能猜到,树和堆的合体,其实原理比较简单,在树中维护一个"优先级“,”优先级“ 采用随机数的方法,但是”优先级“必须满足根堆的性质,当然是“大根 ...

  7. 6天通吃树结构—— 第三天 Treap树

    原文:6天通吃树结构-- 第三天 Treap树 我们知道,二叉查找树相对来说比较容易形成最坏的链表情况,所以前辈们想尽了各种优化策略,包括AVL,红黑,以及今天 要讲的Treap树. Treap树算是 ...

  8. BZOJ3224/LOJ104 普通平衡树 treap(树堆)

    您需要写一种数据结构,来维护一些数,其中需要提供以下操作:1. 插入x2. 删除x(若有多个相同的数,因只删除一个)3. 查询x的排名(若有多个相同的数,因输出最小的排名)4. 查询排名为x的数5. ...

  9. 真·浅谈treap树

    treap树是一种平衡树,它有平衡树的性质,满足堆的性质,是二叉搜索树,但是我们需要维护他 为什么满足堆的性质?因为每个节点还有一个随机权值,按照随机权值维持这个堆(树),可以用O(logn)的复杂度 ...

随机推荐

  1. NYOJ-16-矩形嵌套 记忆化搜索

    #include<iostream> #include<stdio.h> #include<string.h> #include<algorithm> ...

  2. RabbitMQ防止消息丢失

    转载请注明出处 0.目录 RabbitMQ-从基础到实战(1)— Hello RabbitMQ RabbitMQ-从基础到实战(3)— 消息的交换 1.简介 RabbitMQ中,消息丢失可以简单的分为 ...

  3. Apache Tomcat® - Which Version Do I Want?

    Apache Tomcat® - Which Version Do I Want?http://tomcat.apache.org/whichversion.html

  4. 从零开始搭建VUE项目

    前言: 此样板面向大型,严肃的项目,并假定您对Webpack和vue-loader有些熟悉. 请务必阅读vue-loader的常见工作流配方的文档. 如果您只想尝试vue-loader或者鞭打一个快速 ...

  5. [转帖]Windows 操作系统有哪些原生的工具和软件不被人了解却很有用?

    Windows 操作系统有哪些原生的工具和软件不被人了解却很有用? 蛋蛋 司马米青E1E1九木 https://www.zhihu.com/question/25343481/answer/30798 ...

  6. png8、16、24、32位的区别

    我们都知道一张图片可以保存为很多种不同的格式,比如bmp/png/jpeg/gif等等.这个是从文件格式的角度看,我们抛开文件格式,看图片本身,我们可以分为8位, 16位, 24位, 32位等. 单击 ...

  7. python爬虫之Beautiful Soup的基本使用

    1.简介 简单来说,Beautiful Soup是python的一个库,最主要的功能是从网页抓取数据.官方解释如下: Beautiful Soup提供一些简单的.python式的函数用来处理导航.搜索 ...

  8. python学习笔记(6)--条件分支语句

    if xxxx: coding if xxxx: coding else: coding if xxxx: coding elif xxx: coding …… else: coding 或者一种简洁 ...

  9. linux重装系统,如何保存硬盘中的内容

    以前没有太关注重装系统如何保留下硬盘中的内容.但是最近有一些文件在重装系统后确实需要继续保留下来,于是花了点时间了解下磁盘分区相关的东东. 参考 http://blog.csdn.net/openn/ ...

  10. Python turtle绘制阴阳太极图代码解析

    本文详细分析如何使用Python turtle绘制阴阳太极图,先来分解这个图形,图片中有四种颜色,每条曲线上的箭头表示乌龟移动的方向,首先从中心画一个半圆(红线),以红线所示圆的直径作半径画一个校园, ...