<题目链接>

题目大意:

给你一张图,问你其中没有边重合的最短路径有多少条。

解题分析:

建图的时候记得存一下链式后向边,方便寻找最短路径,然后用Dijkstra或者SPFA跑一遍最短路,从终点开始DFS,找出最短路径上所有的边,然后将其加入网络,所有边的容量置为1,以起点为源点,终点为汇点,跑一遍最大流,求出的结果即为最短路的数量。

Dijkstra+Dinic版:

 #include <iostream>
 #include <cstdio>
 #include <cstring>
 #include <queue>
 #include <algorithm>
 using namespace std;

 ;
 ;
 const int INF = 0x3f3f3f3f;

 int n, m, st, ed, cnt, cnt1;
 int head[N], head1[N], dep[N], tail[N];
 bool vis[N];

 struct Edge{
     int u, v, w, next, next1;
 }edge[M<<], edge1[M<<];

 struct Node{
     int index,dist;
     bool operator < (const Node &tmp )const{
         return dist>tmp.dist;
     }
 }node[M<<];

 void init(){
     cnt = ,cnt1 = ;
     memset(head, -, sizeof head);
     memset(head1, -, sizeof head1);
     memset(tail, -, sizeof tail);
 }
 void addedge(int u, int v, int w){     //建图,跑最短路
     edge[cnt].u = u; edge[cnt].v = v;
     edge[cnt].w = w; edge[cnt].next = head[u];
     head[u] = cnt;
     edge[cnt].next1 = tail[v];     //tail[]数组相当于是反向的head[]数组,链式后向边,用来寻找最短路径上的边
     tail[v] = cnt++;
 }
 void addedge1(int u, int v, int w){    //建图,跑最大流
     edge1[cnt1].u = u; edge1[cnt1].v = v;
     edge1[cnt1].w = w; edge1[cnt1].next = head1[u];
     head1[u] = cnt1++;           //正向弧

     edge1[cnt1].v = u; edge1[cnt1].u = v;
     edge1[cnt1].w = ; edge1[cnt1].next = head1[v];
     head1[v] = cnt1++;           //反向弧
 }

 int Dij(){
     priority_queue<Node>q;
     ;i<=n;i++)
         vis[i] = false,node[i].index=i,node[i].dist=INF;
     node[st].dist=;
     q.push(node[st]);
     while(!q.empty()){
         int u=q.top().index;q.pop();
         if(vis[u])continue;
         vis[u]=true;
         for(int i=head[u];~i;i=edge[i].next){
             int v = edge[i].v;
             if(node[v].dist>node[u].dist+edge[i].w){
                 node[v].dist = node[u].dist+edge[i].w;
                 q.push(node[v]);
             }
         }
     }
     return node[ed].dist!= INF;
 }

 void dfs(int v){    //寻找最短路中的所有边,并将其加入网络
     ; i = edge[i].next1){
         int u = edge[i].u;   //u为该后向边的起始点
         if(node[u].dist+edge[i].w == node[v].dist){   //判断该边是否为最短路中的边
             addedge1(u, v, );    //如果是的话,就加入网络中,跑最大流
             if(!vis[u]){
                 vis[u] = ;
                 dfs(u);
             }
         }
     }
 }

 /*--    Dinic    --*/
 bool bfs(){
     memset(vis, , sizeof vis);
     memset(dep, -, sizeof dep);
     queue<int> q;
     q.push(st);
     vis[st] = ;
     dep[st] = ;
     while(!q.empty()){
         int cur = q.front();q.pop();
         ; i = edge1[i].next){
             int v = edge1[i].v;
             ){
                 dep[v] = dep[cur]+;
                 vis[v] = ;
                 q.push(v);
             }
         }
     }
     ;   //如果dep[ed]!=-1,说明仍然存在增广路
 }

 int dfs1(int cur, int flow){
     if(cur == ed) return flow;
     ;
      && flow > res; i = edge1[i].next){
         int v = edge1[i].v;
          && dep[v] == dep[cur]+){
             int x = min(edge1[i].w, flow-res);
             int f = dfs1(v, x);
             edge1[i].w-=f;
             edge1[i^].w+=f;
             res += f;
         }
     }
     ;
     return res;
 }

 int dinic(){
     ,res;
     while(bfs()){
         while(res = dfs1(st, INF)){
             sumflow += res;
         }
     }
     return sumflow;
 }
 /*--    Dinic    --*/

 int main(){
     int T; scanf("%d", &T);
     while(T--){
         init();
         scanf("%d%d", &n, &m);
         ; i < m; i++){
             int u, v, w;
             scanf("%d%d%d", &u, &v, &w);
             addedge(u, v, w);
         }
         scanf("%d%d", &st, &ed);
         ");    //跑最短路,如果st->ed不可达,则直接输出0
         else{
             memset(vis,false,sizeof(vis));    //注意,dijkstra要加上这一句,spfa则不用,因为spfa结束后,所有点的vis全部置为false
             dfs(ed);   //找到最短路中的所有边,并将其加入网络
             printf("%d\n",dinic());    //根据最短路所有的边求最大流
         }
     }
     ;
 }

SPFA+Dinic版:

 #include <iostream>
 #include <cstdio>
 #include <cstring>
 #include <queue>
 #include <algorithm>
 using namespace std;

 ;
 ;
 const int INF = 0x3f3f3f3f;

 int n, m, st, ed, cnt, cnt1;
 int head[N], head1[N], dis[N], dep[N], tail[N];
 bool vis[N];

 struct Edge{
     int u, v, w, next, next1;
 }edge[M<<], edge1[M<<];

 void init(){
     cnt = ,cnt1 = ;
     memset(head, -, sizeof head);
     memset(head1, -, sizeof head1);
     memset(tail, -, sizeof tail);
 }
 void addEdge1(int u, int v, int w){     //建图,跑最短路
     edge[cnt].u = u; edge[cnt].v = v;
     edge[cnt].w = w; edge[cnt].next = head[u];
     head[u] = cnt;
     edge[cnt].next1 = tail[v];     //tail[]数组相当于是反向的head[]数组,链式后向边,用来寻找最短路径上的边
     tail[v] = cnt++;
 }
 void addEdge2(int u, int v, int w){    //建图,跑最大流
     edge1[cnt1].u = u; edge1[cnt1].v = v;
     edge1[cnt1].w = w; edge1[cnt1].next = head1[u];
     head1[u] = cnt1++;           //正向弧

     edge1[cnt1].v = u; edge1[cnt1].u = v;
     edge1[cnt1].w = ; edge1[cnt1].next = head1[v];
     head1[v] = cnt1++;           //反向弧
 }

 int spfa(){
     queue<int> q;
     ; i <= n; i++)
         vis[i] = ,dis[i] = INF;
     vis[st] = ; dis[st] = ;
     q.push(st);
     while(!q.empty()){
         int cur = q.front();
         q.pop(); vis[cur] = ;
         ; i = edge[i].next)
         {
             int v = edge[i].v;
             if(dis[v] > dis[cur]+edge[i].w)
             {
                 dis[v] = dis[cur]+edge[i].w;
                 if(!vis[v])
                 {
                     vis[v] = ;
                     q.push(v);
                 }
             }
         }
     }
     return dis[ed] != INF;
 }

 void dfs(int v){    //寻找最短路中的所有边,并将其加入网络
     ; i = edge[i].next1){
         int u = edge[i].u;   //u为该后向边的起始点
         if(dis[u]+edge[i].w == dis[v]){   //判断该边是否为最短路中的边
             addEdge2(u, v, );    //如果是的话,就加入网络中,跑最大流
             if(!vis[u]){
                 vis[u] = ;
                 dfs(u);
             }
         }
     }
 }

 /*--    Dinic    --*/
 bool bfs(){
     memset(vis, , sizeof vis);
     memset(dep, -, sizeof dep);
     queue<int> q;
     q.push(st);
     vis[st] = ;
     dep[st] = ;
     while(!q.empty()){
         int cur = q.front();q.pop();
         ; i = edge1[i].next){
             int v = edge1[i].v;
             ){
                 dep[v] = dep[cur]+;
                 vis[v] = ;
                 q.push(v);
             }
         }
     }
     ;   //如果dep[ed]!=-1,说明仍然存在增广路
 }

 int dfs1(int cur, int flow){
     if(cur == ed) return flow;
     ;
      && flow > res; i = edge1[i].next){
         int v = edge1[i].v;
          && dep[v] == dep[cur]+){
             int x = min(edge1[i].w, flow-res);
             int f = dfs1(v, x);
             edge1[i].w-=f;
             edge1[i^].w+=f;
             res += f;
         }
     }
     ;
     return res;
 }

 int dinic(){
     ,res;
     while(bfs()){
         while(res = dfs1(st, INF)){
             sumflow += res;
         }
     }
     return sumflow;
 }
 /*--    Dinic    --*/

 int main(){
     int T; scanf("%d", &T);
     while(T--){
         init();
         scanf("%d%d", &n, &m);
         ; i < m; i++){
             int u, v, w;
             scanf("%d%d%d", &u, &v, &w);
             addEdge1(u, v, w);
         }
         scanf("%d%d", &st, &ed);
         ");    //跑最短路,如果st->ed不可达,则直接输出0
         else{
             dfs(ed);   //找到最短路中的所有边,并将其加入网络
             printf("%d\n",dinic());    //根据最短路所有的边求最大流
         }
     }
     ;
 }

2018-11-23

HDU 3416 Marriage Match IV 【最短路】(记录路径)+【最大流】的更多相关文章

  1. HDU 3416 Marriage Match IV (最短路建图+最大流)

    (点击此处查看原题) 题目分析 题意:给出一个有n个结点,m条单向边的有向图,问从源点s到汇点t的不重合的最短路有多少条,所谓不重复,意思是任意两条最短路径都不共用一条边,而且任意两点之间的边只会用一 ...

  2. hdu 3416 Marriage Match IV (最短路+最大流)

    hdu 3416 Marriage Match IV Description Do not sincere non-interference. Like that show, now starvae ...

  3. HDU 3416 Marriage Match IV (最短路径,网络流,最大流)

    HDU 3416 Marriage Match IV (最短路径,网络流,最大流) Description Do not sincere non-interference. Like that sho ...

  4. HDU 3416 Marriage Match IV (求最短路的条数,最大流)

    Marriage Match IV 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/Q Description Do not si ...

  5. HDU 3416 Marriage Match IV(ISAP+最短路)题解

    题意:从A走到B,有最短路,问这样不重复的最短路有几条 思路:先来讲选有效边,我们从start和end各跑一次最短路,得到dis1和dis2数组,如果dis1[u] + dis2[v] + cost[ ...

  6. HDU 3416 Marriage Match IV(最短路,网络流)

    题面 Do not sincere non-interference. Like that show, now starvae also take part in a show, but it tak ...

  7. hdu 3416 Marriage Match IV 【 最短路 最大流 】

    求边不可重复的最短路条数 先从起点到终点用一次dijkstra,再从终点到起点用一次dijkstra,来判断一条边是否在最短路上 如果在,就将这条边的两个端点连起来,容量为1 再跑一下dinic(), ...

  8. HDU 3416 Marriage Match IV dij+dinic

    题意:给你n个点,m条边的图(有向图,记住一定是有向图),给定起点和终点,问你从起点到终点有几条不同的最短路 分析:不同的最短路,即一条边也不能相同,然后刚开始我的想法是找到一条删一条,然后光荣TLE ...

  9. HDU 3416 Marriage Match IV

    最短路+最大流 #include<cstdio> #include<cstring> #include<string> #include<cmath> ...

随机推荐

  1. Confluence 6 从一个 XML 备份中导入一个空间

    有下面 2 中方法可以导入一个空间——通过上传一个文件,或者从你 Confluence 服务器上的一个目录中导入.上传文件仅仅是针对一个小站点的情况.为了取得最好的导入结果,我们推荐你从服务器上的目录 ...

  2. Confluence 6 服务器的许可证信息

    Confluence 6 服务器的许可证信息. https://www.cwiki.us/display/CONFLUENCEWIKI/Managing+your+Confluence+License

  3. 最短路径之Floyd-warshall算法

    哇咔咔,最喜欢这种算法了,算法简单,暴力解决: 可惜数据大点就解决不了问题了: 输入的数据是 第一行第一个数是city的数量n,第二个是路径数t, 接下来n行为a至b的距离 4 81 2 2 1 3 ...

  4. oracle 12c ORA-01017:invalid username/password; logon denied

    Oracle 12C 中,想通过操作系统认证登录Oracle 数据库,有一些要注意的地方.不然就会遇到 ORA-01017:invalid username/password; logon denie ...

  5. logging模板日志格式

    logging模板日志格式 创建loginfo.py模块,然后导入定义的logging配置,即可使用 cat loginfo.py """ logging配置 " ...

  6. 20165323《Java程序设计》第九周学习总结

    一.教材内容学习总结 URL类 1.URL 类是 java.net 包中的一个重要的类,使用 URL 创建对象的应用程序称为客户端程序. 2.一个 URL 对象通常包含最基本的三部分信息:协议.地址和 ...

  7. Doracle.jdbc.J2EE13Compliant=true

    To make the Oracle driver behave in a Java EE-compliant manner, you must define the following JVM pr ...

  8. RPC远程过程调用实例

    什么是RPC RPC 的全称是 Remote Procedure Call 是一种进程间通信方式.它允许程序调用另一个地址空间(通常是共享网络的另一台机器上)的过程或函数,而不用程序员显式编码这个远程 ...

  9. maven安装和eclipse集成

    maven作为一个项目构建工具,在开发的过程中很受欢迎,可以帮助管理项目中的bao依赖问题,另外它的很多功能都极大的减少了开发的难度,下面来介绍maven的安装及与eclipse的集成. maven的 ...

  10. Java基础知识➣面向对象(八)

    概述 Java和C#都是面向对象语言,面向对象编程是目前高级语言习惯的编程模式,与C++编写过程编程而言,面向对象使用起来高效.灵活:面向对象的三个特征:封装.继承和多态. Java面向对象 1.类封 ...