WSS Process On Causal LTI System
Consider a real LTI system with a WSS process $x(t)$ as input and WSS process $y(t)$ as output. Base on the WSS correlation properties,we get these equations
$\begin{align*}
&Time-Domain &:&R_{yy}(\tau) &= h(\tau)*h(-\tau)*R_{xx}(\tau)\\
&Frequency-Domain &:&S_{yy}(j\omega) &= H(j\omega)H^*(j\omega)S_{xx}(j\omega)
\end{align*}$
The way we get $x(t)$ from white noise is no different. Let the input be a white noise with PSD $W_{xx}(j\omega)=1$,which means that its auto-correlation is $\delta$. Then the system can be seen to be a modeling filter denoted by $m(t)$ in time-domain and $M_{xx}(j\omega)$ in frequency-domain.
This can be summarized as the following equations
$\begin{align*}
&Time-Domain &:&R_{xx}(\tau) &= m_{xx}(\tau)*m_{xx}(-\tau)\\
&Frequency-Domain &:&S_{xx}(j\omega) &= M_{xx}(j\omega)M_{xx}^*(j\omega)
\end{align*}$
Now, to think of a system which is the cascade of the filter $m_{xx}(\tau)$ and $m_{xx}(-\tau)$.
The filter $m_{xx}(\tau)$ can be decomposed into the sum of an even part $m_e(\tau)$, and an odd part $m_o(\tau)$
$m_{xx}(\tau) = m_e(\tau)+m_o(\tau)$
where
$\begin{align*}
m_e(\tau)&= \frac{1}{2}(m_{xx}(\tau)+m_{xx}(-\tau))\\
m_o(\tau)&= \frac{1}{2}(m_{xx}(\tau)-m_{xx}(-\tau))\\
\end{align*}$
If the filter $m_{xx}(\tau)$ is causal, in order that $m_{xx}(\tau)=0$ for $\tau<0$, we require that
$m_o(\tau) = \left\{\begin{matrix}
m_e(\tau), &\tau >0 \\
-m_e(\tau), &\tau<0
\end{matrix}\right.\ =sgn(\tau)m_e(\tau)$
Then the causal impulse response may be written in terms of the even function alone
$\begin{align*}
&m_{xx}(\tau) &= m_e(\tau)+sgn(\tau)m_e(\tau)\\
&m_{xx}(-\tau) &= m_e(\tau)-sgn(\tau)m_e(\tau)
\end{align*}$
For example
In the frequency domain, the frequency response function $M_{xx}(j\omega)$ can also be expressed in terms of the even function alone
$\begin{align*}
M_{xx}(j\omega) &= \mathcal{F}\Big\{m_e(\tau)\Big\}+\mathcal{F}\Big\{sgn(\tau)m_e(\tau)\Big\}\\
&= \mathcal{F}\Big\{m_e(\tau)\Big\}+\frac{1}{2\pi}\mathcal{F}\Big\{sgn(\tau)\Big\}\otimes \mathcal{F}\Big\{m_e(\tau)\Big\}\qquad convolution\ theorem\\
&= M_e(j\omega) + j\left[\frac{1}{\pi\omega}\otimes M_e(j\omega) \right]\\
&= M_e(j\omega) + j\widehat{M}_e(j\omega) \qquad \widehat{M}_e(j\omega)\ means\ Hilbert\ Transform\ of\ M_e(j\omega)
\end{align*}$
The frequency response function $M_{xx}^*(j\omega)$ can be derived with the same argument.
$\displaystyle{M_{xx}^*(j\omega) = M_e(j\omega) - j\widehat{M}_e(j\omega)}$
Thus
$\begin{align*}
S_{xx}(j\omega)&=M_{xx}(j\omega)M_{xx}^*(j\omega)\\
&=\Big\{M_e(j\omega)+j\widehat{M}_e(j\omega)\Big\}\Big\{M_e(j\omega)-j\widehat{M}_e(j\omega)\Big\}\\
&=M_e^2(j\omega)+\widehat{M}_e^2(j\omega)
\end{align*}$
Back to the WSS process, $S_{xx}(j\omega)$ is the PSD of $x(t)$. For real WSS process, the PSD should meet 3 condictions:even, real, non-negative. These condictions can be easily varified on $M_e^2(j\omega)+\widehat{M}_e^2(j\omega)$.
- $M_e^2(j\omega)+\widehat{M}_e^2(j\omega)$ is real, because it is the sum of square
- $M_e^2(j\omega)+\widehat{M}_e^2(j\omega)$ is non-negative, because it is the sum of square
- The first term is the square of FT of real even function, so that $M_e(j\omega)$ is real and even. The second term is the Hilbert transform of the real even function $M_e(j\omega)$. According to the Hilbert transform duality, $\widehat{M}_e(j\omega)$ is odd, which means that $\widehat{M}_e^2(j\omega)$ is even. With these understanding, it is evident that $M_e^2(j\omega)+\widehat{M}_e^2(j\omega)$ is even.
Reference :
Alan V. Oppenheim: Signals, Systems and Inference, Chapter 11: Wiener Filtering
WSS Process On Causal LTI System的更多相关文章
- Create process in UNIX like system
In UNIX, as we’ve seen, each process is identified by its process identifier, which is a unique inte ...
- Linux利器 strace [看出process呼叫哪個system call]
Linux利器 strace strace常用来跟踪进程执行时的系统调用和所接收的信号. 在Linux世界,进程不能直接访问硬件设备,当进程需要访问硬件设备(比如读取磁盘文件,接收网络数据等等)时,必 ...
- Wiener Filter
假设分别有两个WSS process:$x[n]$,$y[n]$,这两个process之间存在某种关系,并且我们也了解这种关系.现在我们手头上有process $x[n]$,目的是要设计一个LTI系统 ...
- LTI系统对WSS Processes的作用
本文主要专注讨论LTI系统对WSS Process的影响.WSS Process的主要特性有mean以及correlation,其中correlation特性在滤波器设计,信号检测,信号预测以及系统识 ...
- Power Spectral Density
对于一个特定的信号来说,有时域与频域两个表达形式,时域表现的是信号随时间的变化,频域表现的是信号在不同频率上的分量.在信号处理中,通常会对信号进行傅里叶变换得到该信号的频域表示,从而得到信号在频域上的 ...
- System.Diagnostics.Process.Star的用法
System.Diagnostics.Process.Start(); 能做什么呢?它主要有以下几个功能: 1.打开某个链接网址(弹窗). 2.定位打开某个文件目录. 3.打开系统特殊文件夹,如“控制 ...
- System.Diagnostics.Process 测试案例
1.System.Diagnostics.Process 执行exe文件 创建项目,编译成功后,然后把要运行的exe文件拷贝到该项目的运行工作目录下即可,代码如下: using System; usi ...
- Unable to extract 64-bitimage. Run Process Explorer from a writeable directory
Unable to extract 64-bitimage. Run Process Explorer from a writeable directory When we run Process E ...
- Linux Process VS Thread VS LWP
Process program program==code+data; 一个进程可以对应多个程序,一个程序也可以变成多个进程.程序可以作为一种软件资源长期保存,以文件的形式存放在硬盘 process: ...
随机推荐
- mysql基本知识点梳理和查询优化
目录 一.索引相关 二.EXPLIAN中有用的信息 三.字段类型和编码 四.SQL语句总结 五.踩坑 六.千万大表在线修改 七.慢查询日志 八.查看sql进程和杀死进程 九.一些数据库性能的思考 本文 ...
- 如何编写.NET Core Global Tools (附两个案例)
一.什么是 .NET Core Global Tools 2018年5月31日(北京时间)微软发布了 .NET Core 2.1 正式版,.NET Core 2.1 为我们带来了一个新的特性:.NET ...
- HTML5事件
Html5事件 contextmenu事件 用以表示何时应该显示上下文菜单,以便开发人员取消默认的上下文菜单而提供自定义的菜单. 由于此事件时冒泡的,因此可以为document指定一个事件处理程序,用 ...
- ubuntu下无法在目录下创建文件夹,权限不足解决办法
问题详情:偶然在根目录创建文件夹的时候,突然显示错误,当时很惊讶,以前没遇见过这样的问题.当时界面是这样的. 用了一个 cd / 命令从用户磁盘跳到了根目录 使用 mkdir 命令准备创建一个文件夹, ...
- 教你使用HTML5原生对话框元素,轻松创建模态框组件
HTML 5.2草案加入了新的dialog元素.但是是一种实验技术. 以前,如果我们想要构建任何形式的模式对话框或对话框,我们需要有一个背景,一个关闭按钮,将事件绑定在对话框中的方式安排我们的标记,找 ...
- struts2的基本使用
struts2在web中当作前端控制器,接收来自页面的请求,使用过滤器拦截模式对请求进行拦截并交给相应配置的action类处理. 所以在web中使用最重要的是struts2的核心过滤器StrutsPr ...
- scrapy之持久化存储
scrapy之持久化存储 scrapy持久化存储一般有三种,分别是基于终端指令保存到磁盘本地,存储到MySQL,以及存储到Redis. 基于终端指令的持久化存储 scrapy crawl xxoo - ...
- 【问题解决方案】之 jmeter启动报错:Not able to find Java executable or version. Please check your Java installation
故事发生在云计算实验课上-- ** 故事发生在云计算实验课上-- Step 1 在Xshell中登录自己的cloud虚拟机后,<sudo su ->切换到root用户 Step 2 < ...
- mysql 5.7:show_compatibility_56
show_compatibility_56 - rudy gao - CSDN博客 https://blog.csdn.net/rudygao/article/details/50403107 [SO ...
- js判断手机机型,然后进行相对应的操作
我们通过浏览器内置的userAgent来判断手机机型. 具体代码如下: var u = navigator.userAgent, app = navigator.appVersion; if(/App ...