Consider a real LTI system with a WSS process $x(t)$ as input and WSS process $y(t)$ as output. Base on the WSS correlation properties,we get these equations

$\begin{align*}
&Time-Domain  &:&R_{yy}(\tau) &= h(\tau)*h(-\tau)*R_{xx}(\tau)\\
&Frequency-Domain &:&S_{yy}(j\omega) &= H(j\omega)H^*(j\omega)S_{xx}(j\omega)
\end{align*}$

The way we get $x(t)$ from white noise is no different. Let the input be a white noise with PSD $W_{xx}(j\omega)=1$,which means that its auto-correlation is $\delta$. Then the system can be seen to be a modeling filter denoted by $m(t)$ in time-domain and $M_{xx}(j\omega)$ in frequency-domain.

This can be summarized as the following equations

$\begin{align*}
&Time-Domain  &:&R_{xx}(\tau) &= m_{xx}(\tau)*m_{xx}(-\tau)\\
&Frequency-Domain &:&S_{xx}(j\omega) &= M_{xx}(j\omega)M_{xx}^*(j\omega)
\end{align*}$

Now, to think of a system which is the cascade of the filter $m_{xx}(\tau)$ and $m_{xx}(-\tau)$.

The filter $m_{xx}(\tau)$ can be decomposed into the sum of an even part $m_e(\tau)$, and an odd part $m_o(\tau)$

$m_{xx}(\tau) = m_e(\tau)+m_o(\tau)$

where

$\begin{align*}
m_e(\tau)&= \frac{1}{2}(m_{xx}(\tau)+m_{xx}(-\tau))\\
m_o(\tau)&= \frac{1}{2}(m_{xx}(\tau)-m_{xx}(-\tau))\\
\end{align*}$

If the filter $m_{xx}(\tau)$ is causal, in order that $m_{xx}(\tau)=0$ for $\tau<0$, we require that

$m_o(\tau) = \left\{\begin{matrix}
m_e(\tau), &\tau >0 \\
-m_e(\tau), &\tau<0
\end{matrix}\right.\ =sgn(\tau)m_e(\tau)$

Then the causal impulse response may be written in terms of the even function alone

$\begin{align*}
&m_{xx}(\tau) &= m_e(\tau)+sgn(\tau)m_e(\tau)\\
&m_{xx}(-\tau) &= m_e(\tau)-sgn(\tau)m_e(\tau)
\end{align*}$

For example

In the frequency domain, the frequency response function $M_{xx}(j\omega)$ can also be expressed in terms of the even function alone

$\begin{align*}
M_{xx}(j\omega) &= \mathcal{F}\Big\{m_e(\tau)\Big\}+\mathcal{F}\Big\{sgn(\tau)m_e(\tau)\Big\}\\
&= \mathcal{F}\Big\{m_e(\tau)\Big\}+\frac{1}{2\pi}\mathcal{F}\Big\{sgn(\tau)\Big\}\otimes \mathcal{F}\Big\{m_e(\tau)\Big\}\qquad convolution\ theorem\\
&= M_e(j\omega) + j\left[\frac{1}{\pi\omega}\otimes M_e(j\omega) \right]\\
&= M_e(j\omega) + j\widehat{M}_e(j\omega) \qquad \widehat{M}_e(j\omega)\ means\ Hilbert\ Transform\ of\ M_e(j\omega)
\end{align*}$

The frequency response function $M_{xx}^*(j\omega)$ can be derived with the same argument.

$\displaystyle{M_{xx}^*(j\omega) = M_e(j\omega) - j\widehat{M}_e(j\omega)}$

Thus

$\begin{align*}
S_{xx}(j\omega)&=M_{xx}(j\omega)M_{xx}^*(j\omega)\\
&=\Big\{M_e(j\omega)+j\widehat{M}_e(j\omega)\Big\}\Big\{M_e(j\omega)-j\widehat{M}_e(j\omega)\Big\}\\
&=M_e^2(j\omega)+\widehat{M}_e^2(j\omega)
\end{align*}$

Back to the WSS process, $S_{xx}(j\omega)$ is the PSD of $x(t)$. For real WSS process, the PSD should meet 3 condictions:even, real, non-negative. These condictions can be easily varified on $M_e^2(j\omega)+\widehat{M}_e^2(j\omega)$.

  1. $M_e^2(j\omega)+\widehat{M}_e^2(j\omega)$ is real, because it is the sum of square
  2. $M_e^2(j\omega)+\widehat{M}_e^2(j\omega)$ is non-negative, because it is the sum of square
  3. The first term is the square of FT of real even function, so that $M_e(j\omega)$ is real and even. The second term is the Hilbert transform of the real even function $M_e(j\omega)$. According to the Hilbert transform duality, $\widehat{M}_e(j\omega)$ is odd, which means that $\widehat{M}_e^2(j\omega)$ is even. With these understanding, it is evident that $M_e^2(j\omega)+\widehat{M}_e^2(j\omega)$ is even.

Reference :

MIT Open course 2.161 Signal Processing: Continuous and Discrete: Determining a System's Causality from its Frequency Response

Alan V. Oppenheim: Signals, Systems and Inference, Chapter 11: Wiener Filtering

WSS Process On Causal LTI System的更多相关文章

  1. Create process in UNIX like system

    In UNIX, as we’ve seen, each process is identified by its process identifier, which is a unique inte ...

  2. Linux利器 strace [看出process呼叫哪個system call]

    Linux利器 strace strace常用来跟踪进程执行时的系统调用和所接收的信号. 在Linux世界,进程不能直接访问硬件设备,当进程需要访问硬件设备(比如读取磁盘文件,接收网络数据等等)时,必 ...

  3. Wiener Filter

    假设分别有两个WSS process:$x[n]$,$y[n]$,这两个process之间存在某种关系,并且我们也了解这种关系.现在我们手头上有process $x[n]$,目的是要设计一个LTI系统 ...

  4. LTI系统对WSS Processes的作用

    本文主要专注讨论LTI系统对WSS Process的影响.WSS Process的主要特性有mean以及correlation,其中correlation特性在滤波器设计,信号检测,信号预测以及系统识 ...

  5. Power Spectral Density

    对于一个特定的信号来说,有时域与频域两个表达形式,时域表现的是信号随时间的变化,频域表现的是信号在不同频率上的分量.在信号处理中,通常会对信号进行傅里叶变换得到该信号的频域表示,从而得到信号在频域上的 ...

  6. System.Diagnostics.Process.Star的用法

    System.Diagnostics.Process.Start(); 能做什么呢?它主要有以下几个功能: 1.打开某个链接网址(弹窗). 2.定位打开某个文件目录. 3.打开系统特殊文件夹,如“控制 ...

  7. System.Diagnostics.Process 测试案例

    1.System.Diagnostics.Process 执行exe文件 创建项目,编译成功后,然后把要运行的exe文件拷贝到该项目的运行工作目录下即可,代码如下: using System; usi ...

  8. Unable to extract 64-bitimage. Run Process Explorer from a writeable directory

    Unable to extract 64-bitimage. Run Process Explorer from a writeable directory When we run Process E ...

  9. Linux Process VS Thread VS LWP

    Process program program==code+data; 一个进程可以对应多个程序,一个程序也可以变成多个进程.程序可以作为一种软件资源长期保存,以文件的形式存放在硬盘 process: ...

随机推荐

  1. Git-命令行-使用 Tag 标记你的代码

    前言 正文开始之前,我想我们需要弄明白几个问题: 1.tag 是什么? 2.使用tag 的好处? 3.tag 和 branch 的区别以及使用场景? tag 是什么? tag , 翻译过来是标签的意思 ...

  2. I2C地址问题

    #define     MAX_17040_BATTERY_I2C_ADDR        (0x36) 设备地址 #define     MAX_17040_BATTERY_WRITE_ADDR   ...

  3. mysql自增id超大问题查询

    引言 小A正在balabala写代码呢,DBA小B突然发来了一条消息,"快看看你的用户特定信息表T,里面的主键,也就是自增id,都到16亿了,这才多久,在这样下去过不了多久主键就要超出范围了 ...

  4. JS 面向对象 ~ 创建对象的 9 种方式

    一.创建对象的几种方式 1.通过字面量创建 var obj = {}; 这种写法相当于: var obj = new Object(); 缺点:使用同一个接口创建很多单个对象,会产生大量重复代码 2. ...

  5. Of Study

    Bacon Reading maketh a full man; conference a ready man; and writing an exact man. And therefore, if ...

  6. 项目集成自动分词系统ansj,实现自定义词库

    一,分词系统地址:https://github.com/NLPchina/ansj_seg 二,为什么选择ansj? 1.项目需求: 我们平台要做手机售后的舆情分析,即对购买手机的用户的评论进行分析. ...

  7. 【问题解决方案】editplus中批量将ANSI转换为utf-8

    来自一个用editplus写java程序但是上传到GitHub里中文乱码的故事 大致步骤: editplus全部打开之后(打开为何种编码不重要): (全部打开是指在左下方的文件列表选中-->右击 ...

  8. Spring.profile配合Jenkins发布War包,实现开发、测试和生产环境的按需切换

    前两篇不错 Spring.profile实现开发.测试和生产环境的配置和切换 - Strugglion - 博客园https://www.cnblogs.com/strugglion/p/709102 ...

  9. 3proxy使用方法

    转自:DRL@fireinice写的教程 ******************************************************************************* ...

  10. react单组件 渲染页面

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...