Consider a real LTI system with a WSS process $x(t)$ as input and WSS process $y(t)$ as output. Base on the WSS correlation properties,we get these equations

$\begin{align*}
&Time-Domain  &:&R_{yy}(\tau) &= h(\tau)*h(-\tau)*R_{xx}(\tau)\\
&Frequency-Domain &:&S_{yy}(j\omega) &= H(j\omega)H^*(j\omega)S_{xx}(j\omega)
\end{align*}$

The way we get $x(t)$ from white noise is no different. Let the input be a white noise with PSD $W_{xx}(j\omega)=1$,which means that its auto-correlation is $\delta$. Then the system can be seen to be a modeling filter denoted by $m(t)$ in time-domain and $M_{xx}(j\omega)$ in frequency-domain.

This can be summarized as the following equations

$\begin{align*}
&Time-Domain  &:&R_{xx}(\tau) &= m_{xx}(\tau)*m_{xx}(-\tau)\\
&Frequency-Domain &:&S_{xx}(j\omega) &= M_{xx}(j\omega)M_{xx}^*(j\omega)
\end{align*}$

Now, to think of a system which is the cascade of the filter $m_{xx}(\tau)$ and $m_{xx}(-\tau)$.

The filter $m_{xx}(\tau)$ can be decomposed into the sum of an even part $m_e(\tau)$, and an odd part $m_o(\tau)$

$m_{xx}(\tau) = m_e(\tau)+m_o(\tau)$

where

$\begin{align*}
m_e(\tau)&= \frac{1}{2}(m_{xx}(\tau)+m_{xx}(-\tau))\\
m_o(\tau)&= \frac{1}{2}(m_{xx}(\tau)-m_{xx}(-\tau))\\
\end{align*}$

If the filter $m_{xx}(\tau)$ is causal, in order that $m_{xx}(\tau)=0$ for $\tau<0$, we require that

$m_o(\tau) = \left\{\begin{matrix}
m_e(\tau), &\tau >0 \\
-m_e(\tau), &\tau<0
\end{matrix}\right.\ =sgn(\tau)m_e(\tau)$

Then the causal impulse response may be written in terms of the even function alone

$\begin{align*}
&m_{xx}(\tau) &= m_e(\tau)+sgn(\tau)m_e(\tau)\\
&m_{xx}(-\tau) &= m_e(\tau)-sgn(\tau)m_e(\tau)
\end{align*}$

For example

In the frequency domain, the frequency response function $M_{xx}(j\omega)$ can also be expressed in terms of the even function alone

$\begin{align*}
M_{xx}(j\omega) &= \mathcal{F}\Big\{m_e(\tau)\Big\}+\mathcal{F}\Big\{sgn(\tau)m_e(\tau)\Big\}\\
&= \mathcal{F}\Big\{m_e(\tau)\Big\}+\frac{1}{2\pi}\mathcal{F}\Big\{sgn(\tau)\Big\}\otimes \mathcal{F}\Big\{m_e(\tau)\Big\}\qquad convolution\ theorem\\
&= M_e(j\omega) + j\left[\frac{1}{\pi\omega}\otimes M_e(j\omega) \right]\\
&= M_e(j\omega) + j\widehat{M}_e(j\omega) \qquad \widehat{M}_e(j\omega)\ means\ Hilbert\ Transform\ of\ M_e(j\omega)
\end{align*}$

The frequency response function $M_{xx}^*(j\omega)$ can be derived with the same argument.

$\displaystyle{M_{xx}^*(j\omega) = M_e(j\omega) - j\widehat{M}_e(j\omega)}$

Thus

$\begin{align*}
S_{xx}(j\omega)&=M_{xx}(j\omega)M_{xx}^*(j\omega)\\
&=\Big\{M_e(j\omega)+j\widehat{M}_e(j\omega)\Big\}\Big\{M_e(j\omega)-j\widehat{M}_e(j\omega)\Big\}\\
&=M_e^2(j\omega)+\widehat{M}_e^2(j\omega)
\end{align*}$

Back to the WSS process, $S_{xx}(j\omega)$ is the PSD of $x(t)$. For real WSS process, the PSD should meet 3 condictions:even, real, non-negative. These condictions can be easily varified on $M_e^2(j\omega)+\widehat{M}_e^2(j\omega)$.

  1. $M_e^2(j\omega)+\widehat{M}_e^2(j\omega)$ is real, because it is the sum of square
  2. $M_e^2(j\omega)+\widehat{M}_e^2(j\omega)$ is non-negative, because it is the sum of square
  3. The first term is the square of FT of real even function, so that $M_e(j\omega)$ is real and even. The second term is the Hilbert transform of the real even function $M_e(j\omega)$. According to the Hilbert transform duality, $\widehat{M}_e(j\omega)$ is odd, which means that $\widehat{M}_e^2(j\omega)$ is even. With these understanding, it is evident that $M_e^2(j\omega)+\widehat{M}_e^2(j\omega)$ is even.

Reference :

MIT Open course 2.161 Signal Processing: Continuous and Discrete: Determining a System's Causality from its Frequency Response

Alan V. Oppenheim: Signals, Systems and Inference, Chapter 11: Wiener Filtering

WSS Process On Causal LTI System的更多相关文章

  1. Create process in UNIX like system

    In UNIX, as we’ve seen, each process is identified by its process identifier, which is a unique inte ...

  2. Linux利器 strace [看出process呼叫哪個system call]

    Linux利器 strace strace常用来跟踪进程执行时的系统调用和所接收的信号. 在Linux世界,进程不能直接访问硬件设备,当进程需要访问硬件设备(比如读取磁盘文件,接收网络数据等等)时,必 ...

  3. Wiener Filter

    假设分别有两个WSS process:$x[n]$,$y[n]$,这两个process之间存在某种关系,并且我们也了解这种关系.现在我们手头上有process $x[n]$,目的是要设计一个LTI系统 ...

  4. LTI系统对WSS Processes的作用

    本文主要专注讨论LTI系统对WSS Process的影响.WSS Process的主要特性有mean以及correlation,其中correlation特性在滤波器设计,信号检测,信号预测以及系统识 ...

  5. Power Spectral Density

    对于一个特定的信号来说,有时域与频域两个表达形式,时域表现的是信号随时间的变化,频域表现的是信号在不同频率上的分量.在信号处理中,通常会对信号进行傅里叶变换得到该信号的频域表示,从而得到信号在频域上的 ...

  6. System.Diagnostics.Process.Star的用法

    System.Diagnostics.Process.Start(); 能做什么呢?它主要有以下几个功能: 1.打开某个链接网址(弹窗). 2.定位打开某个文件目录. 3.打开系统特殊文件夹,如“控制 ...

  7. System.Diagnostics.Process 测试案例

    1.System.Diagnostics.Process 执行exe文件 创建项目,编译成功后,然后把要运行的exe文件拷贝到该项目的运行工作目录下即可,代码如下: using System; usi ...

  8. Unable to extract 64-bitimage. Run Process Explorer from a writeable directory

    Unable to extract 64-bitimage. Run Process Explorer from a writeable directory When we run Process E ...

  9. Linux Process VS Thread VS LWP

    Process program program==code+data; 一个进程可以对应多个程序,一个程序也可以变成多个进程.程序可以作为一种软件资源长期保存,以文件的形式存放在硬盘 process: ...

随机推荐

  1. mysql基本知识点梳理和查询优化

    目录 一.索引相关 二.EXPLIAN中有用的信息 三.字段类型和编码 四.SQL语句总结 五.踩坑 六.千万大表在线修改 七.慢查询日志 八.查看sql进程和杀死进程 九.一些数据库性能的思考 本文 ...

  2. 如何编写.NET Core Global Tools (附两个案例)

    一.什么是 .NET Core Global Tools 2018年5月31日(北京时间)微软发布了 .NET Core 2.1 正式版,.NET Core 2.1 为我们带来了一个新的特性:.NET ...

  3. HTML5事件

    Html5事件 contextmenu事件 用以表示何时应该显示上下文菜单,以便开发人员取消默认的上下文菜单而提供自定义的菜单. 由于此事件时冒泡的,因此可以为document指定一个事件处理程序,用 ...

  4. ubuntu下无法在目录下创建文件夹,权限不足解决办法

    问题详情:偶然在根目录创建文件夹的时候,突然显示错误,当时很惊讶,以前没遇见过这样的问题.当时界面是这样的. 用了一个 cd / 命令从用户磁盘跳到了根目录 使用 mkdir 命令准备创建一个文件夹, ...

  5. 教你使用HTML5原生对话框元素,轻松创建模态框组件

    HTML 5.2草案加入了新的dialog元素.但是是一种实验技术. 以前,如果我们想要构建任何形式的模式对话框或对话框,我们需要有一个背景,一个关闭按钮,将事件绑定在对话框中的方式安排我们的标记,找 ...

  6. struts2的基本使用

    struts2在web中当作前端控制器,接收来自页面的请求,使用过滤器拦截模式对请求进行拦截并交给相应配置的action类处理. 所以在web中使用最重要的是struts2的核心过滤器StrutsPr ...

  7. scrapy之持久化存储

    scrapy之持久化存储 scrapy持久化存储一般有三种,分别是基于终端指令保存到磁盘本地,存储到MySQL,以及存储到Redis. 基于终端指令的持久化存储 scrapy crawl xxoo - ...

  8. 【问题解决方案】之 jmeter启动报错:Not able to find Java executable or version. Please check your Java installation

    故事发生在云计算实验课上-- ** 故事发生在云计算实验课上-- Step 1 在Xshell中登录自己的cloud虚拟机后,<sudo su ->切换到root用户 Step 2 < ...

  9. mysql 5.7:show_compatibility_56

    show_compatibility_56 - rudy gao - CSDN博客 https://blog.csdn.net/rudygao/article/details/50403107 [SO ...

  10. js判断手机机型,然后进行相对应的操作

    我们通过浏览器内置的userAgent来判断手机机型. 具体代码如下: var u = navigator.userAgent, app = navigator.appVersion; if(/App ...