Consider a real LTI system with a WSS process $x(t)$ as input and WSS process $y(t)$ as output. Base on the WSS correlation properties,we get these equations

$\begin{align*}
&Time-Domain  &:&R_{yy}(\tau) &= h(\tau)*h(-\tau)*R_{xx}(\tau)\\
&Frequency-Domain &:&S_{yy}(j\omega) &= H(j\omega)H^*(j\omega)S_{xx}(j\omega)
\end{align*}$

The way we get $x(t)$ from white noise is no different. Let the input be a white noise with PSD $W_{xx}(j\omega)=1$,which means that its auto-correlation is $\delta$. Then the system can be seen to be a modeling filter denoted by $m(t)$ in time-domain and $M_{xx}(j\omega)$ in frequency-domain.

This can be summarized as the following equations

$\begin{align*}
&Time-Domain  &:&R_{xx}(\tau) &= m_{xx}(\tau)*m_{xx}(-\tau)\\
&Frequency-Domain &:&S_{xx}(j\omega) &= M_{xx}(j\omega)M_{xx}^*(j\omega)
\end{align*}$

Now, to think of a system which is the cascade of the filter $m_{xx}(\tau)$ and $m_{xx}(-\tau)$.

The filter $m_{xx}(\tau)$ can be decomposed into the sum of an even part $m_e(\tau)$, and an odd part $m_o(\tau)$

$m_{xx}(\tau) = m_e(\tau)+m_o(\tau)$

where

$\begin{align*}
m_e(\tau)&= \frac{1}{2}(m_{xx}(\tau)+m_{xx}(-\tau))\\
m_o(\tau)&= \frac{1}{2}(m_{xx}(\tau)-m_{xx}(-\tau))\\
\end{align*}$

If the filter $m_{xx}(\tau)$ is causal, in order that $m_{xx}(\tau)=0$ for $\tau<0$, we require that

$m_o(\tau) = \left\{\begin{matrix}
m_e(\tau), &\tau >0 \\
-m_e(\tau), &\tau<0
\end{matrix}\right.\ =sgn(\tau)m_e(\tau)$

Then the causal impulse response may be written in terms of the even function alone

$\begin{align*}
&m_{xx}(\tau) &= m_e(\tau)+sgn(\tau)m_e(\tau)\\
&m_{xx}(-\tau) &= m_e(\tau)-sgn(\tau)m_e(\tau)
\end{align*}$

For example

In the frequency domain, the frequency response function $M_{xx}(j\omega)$ can also be expressed in terms of the even function alone

$\begin{align*}
M_{xx}(j\omega) &= \mathcal{F}\Big\{m_e(\tau)\Big\}+\mathcal{F}\Big\{sgn(\tau)m_e(\tau)\Big\}\\
&= \mathcal{F}\Big\{m_e(\tau)\Big\}+\frac{1}{2\pi}\mathcal{F}\Big\{sgn(\tau)\Big\}\otimes \mathcal{F}\Big\{m_e(\tau)\Big\}\qquad convolution\ theorem\\
&= M_e(j\omega) + j\left[\frac{1}{\pi\omega}\otimes M_e(j\omega) \right]\\
&= M_e(j\omega) + j\widehat{M}_e(j\omega) \qquad \widehat{M}_e(j\omega)\ means\ Hilbert\ Transform\ of\ M_e(j\omega)
\end{align*}$

The frequency response function $M_{xx}^*(j\omega)$ can be derived with the same argument.

$\displaystyle{M_{xx}^*(j\omega) = M_e(j\omega) - j\widehat{M}_e(j\omega)}$

Thus

$\begin{align*}
S_{xx}(j\omega)&=M_{xx}(j\omega)M_{xx}^*(j\omega)\\
&=\Big\{M_e(j\omega)+j\widehat{M}_e(j\omega)\Big\}\Big\{M_e(j\omega)-j\widehat{M}_e(j\omega)\Big\}\\
&=M_e^2(j\omega)+\widehat{M}_e^2(j\omega)
\end{align*}$

Back to the WSS process, $S_{xx}(j\omega)$ is the PSD of $x(t)$. For real WSS process, the PSD should meet 3 condictions:even, real, non-negative. These condictions can be easily varified on $M_e^2(j\omega)+\widehat{M}_e^2(j\omega)$.

  1. $M_e^2(j\omega)+\widehat{M}_e^2(j\omega)$ is real, because it is the sum of square
  2. $M_e^2(j\omega)+\widehat{M}_e^2(j\omega)$ is non-negative, because it is the sum of square
  3. The first term is the square of FT of real even function, so that $M_e(j\omega)$ is real and even. The second term is the Hilbert transform of the real even function $M_e(j\omega)$. According to the Hilbert transform duality, $\widehat{M}_e(j\omega)$ is odd, which means that $\widehat{M}_e^2(j\omega)$ is even. With these understanding, it is evident that $M_e^2(j\omega)+\widehat{M}_e^2(j\omega)$ is even.

Reference :

MIT Open course 2.161 Signal Processing: Continuous and Discrete: Determining a System's Causality from its Frequency Response

Alan V. Oppenheim: Signals, Systems and Inference, Chapter 11: Wiener Filtering

WSS Process On Causal LTI System的更多相关文章

  1. Create process in UNIX like system

    In UNIX, as we’ve seen, each process is identified by its process identifier, which is a unique inte ...

  2. Linux利器 strace [看出process呼叫哪個system call]

    Linux利器 strace strace常用来跟踪进程执行时的系统调用和所接收的信号. 在Linux世界,进程不能直接访问硬件设备,当进程需要访问硬件设备(比如读取磁盘文件,接收网络数据等等)时,必 ...

  3. Wiener Filter

    假设分别有两个WSS process:$x[n]$,$y[n]$,这两个process之间存在某种关系,并且我们也了解这种关系.现在我们手头上有process $x[n]$,目的是要设计一个LTI系统 ...

  4. LTI系统对WSS Processes的作用

    本文主要专注讨论LTI系统对WSS Process的影响.WSS Process的主要特性有mean以及correlation,其中correlation特性在滤波器设计,信号检测,信号预测以及系统识 ...

  5. Power Spectral Density

    对于一个特定的信号来说,有时域与频域两个表达形式,时域表现的是信号随时间的变化,频域表现的是信号在不同频率上的分量.在信号处理中,通常会对信号进行傅里叶变换得到该信号的频域表示,从而得到信号在频域上的 ...

  6. System.Diagnostics.Process.Star的用法

    System.Diagnostics.Process.Start(); 能做什么呢?它主要有以下几个功能: 1.打开某个链接网址(弹窗). 2.定位打开某个文件目录. 3.打开系统特殊文件夹,如“控制 ...

  7. System.Diagnostics.Process 测试案例

    1.System.Diagnostics.Process 执行exe文件 创建项目,编译成功后,然后把要运行的exe文件拷贝到该项目的运行工作目录下即可,代码如下: using System; usi ...

  8. Unable to extract 64-bitimage. Run Process Explorer from a writeable directory

    Unable to extract 64-bitimage. Run Process Explorer from a writeable directory When we run Process E ...

  9. Linux Process VS Thread VS LWP

    Process program program==code+data; 一个进程可以对应多个程序,一个程序也可以变成多个进程.程序可以作为一种软件资源长期保存,以文件的形式存放在硬盘 process: ...

随机推荐

  1. python内建的命名空间研究

    python内建的命名空间研究 说明: python内置模块的命名空间.python在启动的时候会自动为我们载入很多内置的函数.类,比如 dict,list,type,print,这些都位于 __bu ...

  2. FineUI经典项目展示(1)生产在线管理系统

    本系列<FineUI经典项目展示>文章将会集中展示一批使用FineUI(开源版).专业版.MVC版的经典项目. 如果你希望自己的FineUI项目出现在这个舞台,请到官网论坛提交申请: ht ...

  3. git 分支管理规范

    保证master分支永远处于可部署的状态.禁止自接提交代码到master分支 开发分支基于master分支创建,命名规范如下: 如果是功能需求,分支命名为feature/xxx,xxx要具有描述性 如 ...

  4. python-re模块-54

    import re # findall # search # match ret = re.findall('[a-z]+', 'eva egon yuan') # 返回所有满足匹配条件的结果,放在列 ...

  5. Python-待

    内置函数总结 https://www.cnblogs.com/jason-lv/p/8243141.html https://www.cnblogs.com/pyyu/p/6702896.html 数 ...

  6. Python之json使用

    一.概念 json是一种通用的数据类型,任何语言都认识 接口返回的数据类型都是json 长得像字典,形式也是k-v { } 其实json是字符串 字符串不能用key.value来取值,要先转成字典才可 ...

  7. Java Core - 序列化和反序列化

    把对象转换为字节序列的过程称为对象的序列化 把字节序列恢复成对象的过程称为对象的反序列化 一.对象的序列化的应用: 1.把对象的字节序列永久地保存到硬盘上,通常存放在一个文件中. 2.在网络上传送对象 ...

  8. yum 命令

    yum( Yellow dog Updater, Modified)是一个在Fedora和RedHat以及SUSE中的Shell前端软件包管理器. 基於RPM包管理,能够从指定的服务器自动下载RPM包 ...

  9. artTemplate之初印象

    介绍 art-template 是JavaScript模板引擎,是一个简约.超快的模板引擎. 它采用作用域预声明的技术来优化模板渲染速度,从而获得接近 JavaScript 极限的运行性能,并且同时支 ...

  10. composer 自动加载一 通过file加载

    github地址 https://github.com/brady-wang/composer composer init 可以生成一个composer.json文件 { "name&quo ...