题面

也就是说, 随机序列RMQ.(\(n \le 8388608\), \(m \le 8*10^6\))

解法

我写了笛卡尔树+tarjan

然而听神仙说, 因为数据随机, 建完树暴力找lca就行, 跑的飞快...吊打std...

还有题解, 真是神仙做法...

设 \(p_i\) 表示比 \(a_i\) 大的前一个数所在的位置,那么 p 构成了一棵树。

若我们需要查询 [l, r] 的答案,只需找到 r 在这棵树上不小于 l 的祖先。于是我们可以按照 l

从大到小排序,一边向上查询祖先一边路径压缩(类似并查集)。

由于树上的每条边至多被压缩一次,复杂度 O(n) 。

我的代码:


#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<set>
#include<map>
using namespace std;
#define rep(i,l,r) for(register int i=(l);i<=(r);++i)
#define repdo(i,l,r) for(register int i=(l);i>=(r);--i)
#define il inline
typedef double db;
typedef long long ll; //---------------------------------------
int n,m;
int gen,p1,p2;
int number(){
gen=(1LL*gen*p1)^p2;
return (gen&(n-1))+1;
}
const int nsz=8388700;
int a[nsz],ans[nsz]; struct tnd{int ch[2];}car[nsz];
int rt,pc=0;
int stk[nsz],top=0;
void build(){
rep(i,1,n){
while(top&&a[stk[top]]<a[i])car[i].ch[0]=stk[top--];
car[stk[top]].ch[1]=i;
stk[++top]=i;
}
rt=stk[1],pc=n;
} struct tq{int t,pr;}qu[nsz*2];
int hd[nsz],pq=1;
void adde(int f,int t){qu[++pq]=(tq){t,hd[f]};hd[f]=pq;}
void adddb(int f,int t){adde(f,t);adde(t,f);} int fa[nsz];
void init(){rep(i,1,n)fa[i]=i;}
void merge(int a,int b){fa[b]=a;}
int find(int p){return p==fa[p]?p:fa[p]=find(fa[p]);} int vi[nsz];
void tar(int p){
vi[p]=1;
int v;
rep(i,0,1){
v=car[p].ch[i];
if(v==0)continue;
tar(v);
merge(p,v);
}
for(int i=hd[p];i;i=qu[i].pr){
if(vi[qu[i].t])
ans[i/2]=find(qu[i].t);
}
}
int main() {
// freopen("max.in", "r", stdin);
// freopen("max.out", "w", stdout); scanf("%d%d", &n, &m);
scanf("%d%d%d", &gen, &p1, &p2);
for (int i = 1; i <= n; ++i)
a[i] = number();
int l,r;
for (int i = 1; i <= m; ++i) {
l = number(), r = number();
if (l > r) swap(l,r);
adddb(l,r);
} build();
init();
tar(rt); ll sum = 0;
for (int i = 1; i <= m; ++i) {
sum=(sum+a[ans[i]])%p2;
}
sum=sum*p1%p2;
printf("%lld\n", sum);
}

std:

#include <cstdio>
#include <ctime>
#include <cstdlib>
#include <algorithm>
using namespace std; const int N = 1e7 + 5; int n, m;
int gen, cute1, cute2;
int number() {
gen = (1LL * gen * cute1) ^ cute2;
return (gen & (n - 1)) + 1;
} int hd[N], nxt[N], id[N], to[N], cnt;
int ans[N], a[N], p[N], q[N]; int add(int x, int y, int i) {
++cnt;
nxt[cnt] = hd[x];
to[cnt] = y;
id[cnt] = i;
hd[x] = cnt;
} int getfa(int x, int y) {
int fa = x;
for (int i = x; i; i = p[i])
if (p[i] < y || p[i] == i) {
fa = i;
break;
}
for (int j, i = x; i != fa; i = j) {
j = p[i], p[i] = fa;
}
return fa;
} int main() {
freopen("max.in", "r", stdin);
freopen("max.out", "w", stdout); scanf("%d%d", &n, &m);
scanf("%d%d%d", &gen, &cute1, &cute2); for (int i = 1; i <= n; ++i)
a[i] = number();
for (int i = 1; i <= m; ++i) {
int l = number(), r = number();
if (l > r) swap(l, r);
add(l, r, i);
}
double t1;
fprintf(stderr, "%lf\n", t1 = (double)clock()/CLOCKS_PER_SEC); int ind = 0;
for (int i = 1; i <= n; ++i) {
while (ind && a[q[ind]] <= a[i]) --ind;
if (ind) p[i] = q[ind];
else p[i] = i;
q[++ind] = i;
} for (int i = n; i; --i) {
for (int j = hd[i]; j; j = nxt[j])
ans[id[j]] = a[getfa(to[j], i)];
} fprintf(stderr, "%lf\n", (double)clock()/CLOCKS_PER_SEC - t1); int sum = 0;
for (int i = 1; i <= m; ++i)
(sum += 1LL * ans[i] * cute1 % cute2) %= cute2;
printf("%d\n", sum);
}

11/1/2018模拟 Max的更多相关文章

  1. 11/5/2018模拟 Problem C

    题面 题解 我有特殊的哈希技巧 以到下一个相同字符的距离为值哈希, 如果不存在或在串外, 就是 \(|T| + 1\). 加入一个新字符 \(S_i\) 时, 同时修改它上一次出现时的值, 由 \(| ...

  2. 11.7 NOIP模拟赛

    目录 2018.11.7 NOIP模拟 A 序列sequence(two pointers) B 锁lock(思路) C 正方形square(埃氏筛) 考试代码 B C 2018.11.7 NOIP模 ...

  3. 11/1 NOIP 模拟赛

    11.1 NOIP 模拟赛 期望得分:50:实际得分:50: 思路:暴力枚举 + 快速幂 #include <algorithm> #include <cstring> #in ...

  4. 2018.11.6 PION 模拟赛

    期望:100 + 40 + 50 = 190 实际:60 + 10 + 50 = 120 考得好炸啊!!T1数组开小了炸掉40,T2用 int 读入 long long ,int存储 long lon ...

  5. 2018.11.5 PION模拟赛

    期望:30 + 40 + 50 = 120 实际:30 + 50 + 40 = 120 ‘’ 思路:最重要的是发现 是完全没有用的,然后这个题目就可以转成DP来做. /* 期望的分:30 */ #in ...

  6. 2018 11.1 PION 模拟赛

    期望:250  100+100+50 实际:210   80+100+30 期望:100   实际:80 最后:两个点T了.可能是求逆元的方法太慢了,也可能是闲的又加了一个快速乘的原因. #inclu ...

  7. 2018.11.08 NOIP模拟 班车(倍增+dfs+bit)

    传送门 对于每个点离线处理出向上走2i2^i2i班车到的最上面的点. 然后每个询问(u,v)(u,v)(u,v)先把(u,v)(u,v)(u,v)倍增到刚好走不到lcalcalca的情况(有一个点如果 ...

  8. 2018.11.08 NOIP模拟 水管(简单构造)

    传送门 仔细读题会发现只要所有点点权之和等于0一定有解. 如何构造? 直接当做树来构造就行了,非树边都赋值成0就行. 代码

  9. 2018.11.08 NOIP模拟 景点(倍增+矩阵快速幂优化dp)

    传送门 首先按照题意构造出转移矩阵. 然后可以矩阵快速幂求出答案. 但是直接做是O(n3qlogm)O(n^3qlogm)O(n3qlogm)的会TTT掉. 观察要求的东西发现我们只关系一行的答案. ...

随机推荐

  1. SkylineGlobe for web开发是否支持IE11?

    之前有客户反馈,说在IE11里浏览skyline开发的系统页面,会提示错误,怀疑是不是skyline不支持IE11了,其实不是. 主要是因为IE11更加遵循W3C规范,所以IE11与低版本IE在加载a ...

  2. face recognition[variations of softmax][L-Softmax]

    本文来自<Large-Margin Softmax Loss for Convolutional Neural Networks>,时间线为2016年12月,是北大和CMU的作品. 0 引 ...

  3. Item 25: 对右值引用使用std::move,对universal引用则使用std::forward

    本文翻译自<effective modern C++>,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! 博客已经迁移到这里啦 右值引用只能绑定那些有资格被move的对象上去.如 ...

  4. JAVA里自定义注解来进行数据验证

    API开发中经常会遇到一些对请求数据进行验证的情况,这时候如果使用注解就有两个好处,一是验证逻辑和业务逻辑分离,代码清晰,二是验证逻辑可以轻松复用,只需要在要验证的地方加上注解就可以. Java提供了 ...

  5. 正确理解Handle对象

    上古时期的程序员, 肯定都知道Handle对象, 一般中文翻译成句柄. 一般的Handle在实现上, 都是一个整数, 而这个整数可以理解为一个指针, 指针指向的地址呢, 又保存了另外一个指针. 之所以 ...

  6. Python-类的特性(property)

    什么是特性property property是一种特殊的属性,访问它时会执行一段功能(函数)然后返回值 例一:BMI指数(bmi是计算而来的,但很明显它听起来像是一个属性而非方法,如果我们将其做成一个 ...

  7. 网络七层模型及TCP、UDP,一次HTTP请求都发生了什么

    一.七层网络模型 http协议运行在应用层   二.TCP-UDP TCP.UDP协议的区别 一次Http 请求,这个过程都发生了什么 TCP 协议如何保证可靠传输 HTTP和HTTPS的区别 TCP ...

  8. html总结:固定表格中单元格宽度

    当然要提前设置好table的width值,然后再写这个,使得每列宽度都相等. <style> table { table-layout: fixed; } </style>

  9. Golang 字符串操作--使用strings、strconv包

    strings包 package main import ( "fmt" "strings" ) func main() { //func Count(s, s ...

  10. Java Core - 创建对象的两种方式

    一.通过new关键字创建对象 Hello hello = null;  //  声明一个引用 hello = new Hello();  //  创建对象 以上两行代码相当于 Hello hello ...