拓展中国剩余定理(ex_crt)
一般来讲,crt(中国剩余定理)比较常见,而ex_crt(拓展中国剩余定理)不是很常用
但是noi 2018偏偏考了这么个诡异的东西...
所以这里写一个ex_crt模板
模型:
求一个x满足上述方程,其中a1,a2...an不一定互质
解法:
设存在一特解x0满足前k个方程组,且LCM(a1,a2...ak)=M
则前k个方程的通解x=x0+k·M(k∈Z)
这是很显然的,因为 (1<=i<=k)
那么第k+1个方程等价于:求使的t值
这显然可以使用ex_gcd求解(移项即可)
那么剩余部分就简单了:不断维护一个x0,最后返回x0即可
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
#define ll long long
using namespace std;
ll n;
ll a[];
ll b[];
ll pow_add(ll x,ll y,ll mod)
{
ll ans=;
while(y)
{
if(y%)
{
ans+=x;
ans%=mod;
}
y/=;
x+=x;
x%=mod;
}
return ans;
}
ll gcd(ll x,ll y)
{
if(y==)
{
return x;
}
return gcd(y,x%y);
}
void ex_gcd(ll a,ll b,ll &x,ll &y)
{
if(b==)
{
x=;
y=;
return;
}
ex_gcd(b,a%b,x,y);
ll t=x;
x=y;
y=t-(a/b)*x;
}
ll ex_crt()
{
ll M0=a[];
ll ans=b[];
for(int i=;i<=n;i++)
{
ll r=gcd(M0,a[i]);
ll bb=((b[i]-ans)%a[i]+a[i])%a[i];
if(bb%r)
{
return -;
}
bb/=r;
ll M=M0/r;
ll aa=a[i]/r;
ll x,y;
ex_gcd(M,aa,x,y);
x=pow_add(x,bb,aa);
ans+=x*M0;
M0*=aa;
ans=(ans%M0+M0)%M0;
}
return (ans%M0+M0)%M0;
}
int main()
{
scanf("%lld",&n);
for(int i=;i<=n;i++)
{
scanf("%lld%lld",&a[i],&b[i]);
}
printf("%lld\n",ex_crt());
return ;
}
拓展中国剩余定理(ex_crt)的更多相关文章
- 拓展中国剩余定理(exCRT)摘要
清除一个误区 虽然中国剩余定理和拓展中国剩余定理只差两个字,但他俩的解法相差十万八千里,所以会不会CRT无所谓 用途 求类似$$\begin{cases}x \equiv b_{1}\pmod{a_{ ...
- C++实现,拓展中国剩余定理——解同余方程组(理论证明和代码实现)
拓展中国剩余定理 前言 记得半年前还写过关于拓展中国剩余定理的博客...不过那时对其理解还不是比较深刻,写的也比较乱. 于是趁学校复习之机,再来重温一下拓展中国剩余定理(以下简称ExCRT) 记得半年 ...
- E - Two Arithmetic Progressions(CodeForces - 710D)(拓展中国剩余定理)
You are given two arithmetic progressions: a1k + b1 and a2l + b2. Find the number of integers x such ...
- 2019牛客暑期多校训练营(第十场) Han Xin and His Troop (高精度+拓展中国剩余定理)
题意 裸题 思路 题中的模数之间并不互质,所以应该用拓展中国剩余定理. 但是交上去会炸,__int128过不了,所以用高精度的板子或者java大数都挺好过的. 这里推荐java大数,因为高精度板子用起 ...
- luogu4777[模板]拓展中国剩余定理题解
题目链接 https://www.luogu.org/problemnew/show/P4777 分析 扩展\(CRT\)就是解决模数不互质的情况,说是扩展\(CRT\),其实都是扩欧... 先来考虑 ...
- POJ-2891 Strange Way to Express Integers(拓展中国剩余定理)
放一个写的不错的博客:https://www.cnblogs.com/zwfymqz/p/8425731.html POJ好像不能用__int128. #include <iostream> ...
- 中国剩余定理(CRT)及其拓展(ExCRT)
中国剩余定理 CRT 推导 给定\(n\)个同余方程 \[ \left\{ \begin{aligned} x &\equiv a_1 \pmod{m_1} \\ x &\equiv ...
- 中国剩余定理及其拓展 CRT&EXGCD
中国剩余定理,又叫孙子定理. 作为一个梗广为流传.其实它的学名叫中国单身狗定理. 中国剩余定理 中国剩余定理是来干什么用的呢? 其实就是用来解同余方程组的.那么什么又是同余方程组呢. 顾名思义就是n个 ...
- Educational Codeforces Round 16 D. Two Arithmetic Progressions (不互质中国剩余定理)
Two Arithmetic Progressions 题目链接: http://codeforces.com/contest/710/problem/D Description You are gi ...
随机推荐
- 2018JAVA面试题附答案
JAVA基础 JAVA中的几种基本类型,各占用多少字节? String能被继承吗?为什么? 不可以,因为String类有final修饰符,而final不能被继承的,实现细节不允许改变.平常我们定义的S ...
- 假设程序需要一个int类型的变量来保持你所有的音乐CD的数量
假设程序需要一个int类型的变量来保持你所有的音乐CD的数量.初始值为0为该变量编写一条声明语句 int numCDs = 0;
- Linux C++ UDP Socket通信实例
环境:Linux 语言:C++ 通信方式:UDP 服务器端的步骤如下: 1. socket: 建立一个socket 2. bind: 将这个socket绑定在某个端口上(A ...
- 统计分析与R软件-chapter2-6
2.6 列表与数据框 2.6.1 列表 1.列表的构造 列表是一种特别的对象集合,它的元素也由序号(下标)区分,但是各元素的类型可以是任意对象,不同元素不必是同一类型,元素本身允许是其他复杂数据类型, ...
- mysql忘记root密码,修改mysql密码
1.修改mysql配置文件 vim /etc/my.cnf #编辑文件 找到[mysqld],在下面添加一行 skip-grant :wq #保存退出 service mysqld restart ...
- Python3学习笔记34-pymongo模块
pymongo模块是python操作mongo数据的第三方模块,记录一下自己常用到的简单用法. 首先需要连接数据库: MongoClient():该方法第一个参数是数据库所在地址,第二个参数是数据库所 ...
- Python3学习笔记28-HtmlTestRunner
HtmlTestRunner是unittest模块下的一个拓展,用来生成测试报告.原生的可以自己找下下载地址,原生的看着比较丑.这次使用的是经过一些大佬优化之后的.具体GitHub地址:https:/ ...
- 题解-UOJ284 快乐游戏鸡
Problem uoj 题意大意: 一棵树,点权\(w_i\),每次玩家可以在树上行走,一条边需要\(1\)的时间,只能往儿子走.每次游戏需要从\(s\)到\(t\). 玩家有一个总死亡次数,初始为\ ...
- EF使用Fluent API配置映射关系
定义一个继承自EntityTypeConfiguration<>泛型类的类来定义domain中每个类的数据库配置,在这个自定义类的构造函数中使用我们上次提到的那些方法配置数据库的映射. 映 ...
- Windows下文件夹扩展名
回收站.{645ff040-5081-101b-9f08-00aa002f954e} 拨号网络.{992CFFA0-F557-101A-88EC-00DD010CCC48} 打印机.{2227a280 ...