正则化 L1 L2
机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1ℓ1-norm和ℓ2ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数。
L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指对损失函数中的某些参数做一些限制。对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归)。下图是Python中Lasso回归的损失函数,式中加号后面一项α||w||1α||w||1即为L1正则化项。
L1正则化和L2正则化的说明如下:
- L1正则化是指权值向量ww中各个元素的绝对值之和,通常表示为||w||1||w||1
- L2正则化是指权值向量ww中各个元素的平方和然后再求平方根(可以看到Ridge回归的L2正则化项有平方符号),通常表示为||w||2||w||2
一般都会在正则化项之前添加一个系数,Python中用αα表示,一些文章也用λλ表示。这个系数需要用户指定。
那添加L1和L2正则化有什么用?下面是L1正则化和L2正则化的作用,这些表述可以在很多文章中找到。
- L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择
- L2正则化可以防止模型过拟合(overfitting);一定程度上,L1也可以防止过拟合
稀疏模型与特征选择
上面提到L1正则化有助于生成一个稀疏权值矩阵,进而可以用于特征选择。为什么要生成一个稀疏矩阵?
稀疏矩阵指的是很多元素为0,只有少数元素是非零值的矩阵,即得到的线性回归模型的大部分系数都是0. 通常机器学习中特征数量很多,例如文本处理时,如果将一个词组(term)作为一个特征,那么特征数量会达到上万个(bigram)。在预测或分类时,那么多特征显然难以选择,但是如果代入这些特征得到的模型是一个稀疏模型,表示只有少数特征对这个模型有贡献,绝大部分特征是没有贡献的,或者贡献微小(因为它们前面的系数是0或者是很小的值,即使去掉对模型也没有什么影响),此时我们就可以只关注系数是非零值的特征。这就是稀疏模型与特征选择的关系。
L1和L2正则化的直观理解
这部分内容将解释为什么L1正则化可以产生稀疏模型(L1是怎么让系数等于零的),以及为什么L2正则化可以防止过拟合。
L1正则化和特征选择
假设有如下带L1正则化的损失函数:
J=J0+α∑w|w|(1)(1)J=J0+α∑w|w|其中J0J0是原始的损失函数,加号后面的一项是L1正则化项,αα是正则化系数。注意到L1正则化是权值的绝对值之和,JJ是带有绝对值符号的函数,因此JJ是不完全可微的。机器学习的任务就是要通过一些方法(比如梯度下降)求出损失函数的最小值。当我们在原始损失函数J0J0后添加L1正则化项时,相当于对J0J0做了一个约束。令L=α∑w|w|L=α∑w|w|,则J=J0+LJ=J0+L,此时我们的任务变成在LL约束下求出J0J0取最小值的解。考虑二维的情况,即只有两个权值w1w1和w2w2,此时L=|w1|+|w2|L=|w1|+|w2|对于梯度下降法,求解J0J0的过程可以画出等值线,同时L1正则化的函数LL也可以在w1w2w1w2的二维平面上画出来。如下图:
图1 L1正则化图中等值线是J0J0的等值线,黑色方形是LL函数的图形。在图中,当J0J0等值线与LL图形首次相交的地方就是最优解。上图中J0J0与LL在LL的一个顶点处相交,这个顶点就是最优解。注意到这个顶点的值是(w1,w2)=(0,w)(w1,w2)=(0,w)。可以直观想象,因为LL函数有很多『突出的角』(二维情况下四个,多维情况下更多),J0J0与这些角接触的机率会远大于与LL其它部位接触的机率,而在这些角上,会有很多权值等于0,这就是为什么L1正则化可以产生稀疏模型,进而可以用于特征选择。
而正则化前面的系数αα,可以控制LL图形的大小。αα越小,LL的图形越大(上图中的黑色方框);αα越大,LL的图形就越小,可以小到黑色方框只超出原点范围一点点,这是最优点的值(w1,w2)=(0,w)(w1,w2)=(0,w)中的ww可以取到很小的值。
类似,假设有如下带L2正则化的损失函数:
J=J0+α∑ww2(2)(2)J=J0+α∑ww2同样可以画出他们在二维平面上的图形,如下:
图2 L2正则化二维平面下L2正则化的函数图形是个圆,与方形相比,被磨去了棱角。因此J0J0与LL相交时使得w1w1或w2w2等于零的机率小了许多,这就是为什么L2正则化不具有稀疏性的原因。
L2正则化和过拟合
拟合过程中通常都倾向于让权值尽可能小,最后构造一个所有参数都比较小的模型。因为一般认为参数值小的模型比较简单,能适应不同的数据集,也在一定程度上避免了过拟合现象。可以设想一下对于一个线性回归方程,若参数很大,那么只要数据偏移一点点,就会对结果造成很大的影响;但如果参数足够小,数据偏移得多一点也不会对结果造成什么影响,专业一点的说法是『抗扰动能力强』。
那为什么L2正则化可以获得值很小的参数?
以线性回归中的梯度下降法为例。假设要求的参数为θθ,hθ(x)hθ(x)是我们的假设函数,那么线性回归的代价函数如下:
J(θ)=12m∑i=1m(hθ(x(i))−y(i))2(3)(3)J(θ)=12m∑i=1m(hθ(x(i))−y(i))2那么在梯度下降法中,最终用于迭代计算参数θθ的迭代式为:
θj:=θj−α1m∑i=1m(hθ(x(i))−y(i))x(i)j(4)(4)θj:=θj−α1m∑i=1m(hθ(x(i))−y(i))xj(i)其中αα是learning rate. 上式是没有添加L2正则化项的迭代公式,如果在原始代价函数之后添加L2正则化,则迭代公式会变成下面的样子:
θj:=θj(1−αλm)−α1m∑i=1m(hθ(x(i))−y(i))x(i)j(5)(5)θj:=θj(1−αλm)−α1m∑i=1m(hθ(x(i))−y(i))xj(i)其中λλ就是正则化参数。从上式可以看到,与未添加L2正则化的迭代公式相比,每一次迭代,θjθj都要先乘以一个小于1的因子,从而使得θjθj不断减小,因此总得来看,θθ是不断减小的。
最开始也提到L1正则化一定程度上也可以防止过拟合。之前做了解释,当L1的正则化系数很小时,得到的最优解会很小,可以达到和L2正则化类似的效果。
- 原文出处:https://blog.csdn.net/jinping_shi/article/details/52433975
- 感谢该文作者,本文主要留档后期复习归纳总结(非原创)
正则化 L1 L2的更多相关文章
- 机器学习 - 正则化L1 L2
L1 L2 Regularization 表示方式: $L_2\text{ regularization term} = ||\boldsymbol w||_2^2 = {w_1^2 + w_2^2 ...
- 【深度学习】L1正则化和L2正则化
在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况.正则化是机器学习中通过显式的控制模 ...
- L1正则化比L2正则化更易获得稀疏解的原因
我们知道L1正则化和L2正则化都可以用于降低过拟合的风险,但是L1正则化还会带来一个额外的好处:它比L2正则化更容易获得稀疏解,也就是说它求得的w权重向量具有更少的非零分量. 为了理解这一点我们看一个 ...
- 机器学习之正则化【L1 & L2】
前言 L1.L2在机器学习方向有两种含义:一是L1范数.L2范数的损失函数,二是L1.L2正则化 L1范数.L2范数损失函数 L1范数损失函数: L2范数损失函数: L1.L2分别对应损失函数中的绝对 ...
- L1正则化和L2正则化
L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择 L2正则化可以防止模型过拟合(overfitting):一定程度上,L1也可以防止过拟合 一.L1正则化 1.L1正则化 需注意, ...
- L1正则化与L2正则化的理解
1. 为什么要使用正则化 我们先回顾一下房价预测的例子.以下是使用多项式回归来拟合房价预测的数据: 可以看出,左图拟合较为合适,而右图过拟合.如果想要解决右图中的过拟合问题,需要能够使得 $ ...
- L1,L2范数和正则化 到lasso ridge regression
一.范数 L1.L2这种在机器学习方面叫做正则化,统计学领域的人喊她惩罚项,数学界会喊她范数. L0范数 表示向量xx中非零元素的个数. L1范数 表示向量中非零元素的绝对值之和. L2范数 表 ...
- ML-线性模型 泛化优化 之 L1 L2 正则化
认识 L1, L2 从效果上来看, 正则化通过, 对ML的算法的任意修改, 达到减少泛化错误, 但不减少训练误差的方式的统称 训练误差 这个就损失函数什么的, 很好理解. 泛化错误 假设 我们知道 预 ...
- 机器学习中L1,L2正则化项
搞过机器学习的同学都知道,L1正则就是绝对值的方式,而L2正则是平方和的形式.L1能产生稀疏的特征,这对大规模的机器学习灰常灰常重要.但是L1的求解过程,实在是太过蛋疼.所以即使L1能产生稀疏特征,不 ...
随机推荐
- RSA加解密
RSA加密解密及数字签名Java实现 RSA公钥加密算法是1977年由罗纳德·李维斯特(Ron Rivest).阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一 ...
- java 基础 浮点类型
1.浮点类型用于表示小数的数据类型. 2.浮点数原理:也就是二进制科学计数法. 3.Java的浮点类型有float和double两种. 4.Java默认浮点类型计算的结果是double类型,字面量也是 ...
- lambda、pair、智能指针及时间函数
Lambda 表达式 auto f1 = [](int x, int y) { return x + y; };cout << f1(2, 3) << endl; int n ...
- 【blog】使用highlight.js高亮你的代码
我的代码 <!--代码高亮插件--> <link rel="stylesheet" type="text/css" href="/w ...
- tomcat源码之connector配置
连接 acceptor /** * Acceptor thread count. */protected int acceptorThreadCount = 0; 处理线程 private int m ...
- cookie——创建、获取、删除
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- 配置中文分词器 IK-Analyzer-Solr7
先下载solr7版本的ik分词器,下载地址:http://search.maven.org/#search%7Cga%7C1%7Ccom.github.magese分词器GitHub源码地址:http ...
- 20165234 《Java程序设计》第六周学习总结
第六周学习总结 教材学习内容总结 第八章 常用实用类 String类 Java专门提供了用来处理字符序列的 String 类.String类在java.lang包中,由于 java.lang 包中的类 ...
- 华为交换机有关BGP的相关配置
作者:邓聪聪 上图是本人在某公司任职期间的一次割接任务,在原有的路由器上新配置的另一台高性能的路由器,两台设备为并行 割接要求: 1:原有的网络结构无变化,并行新设备 2:原有设备下的所有用户无变化 ...
- python3+selenium入门08-鼠标事件
使用click()可以模拟鼠标的左键点击事件,现在的web页面中有很多其他的鼠标交互方式,比如鼠标右击.双击.悬停.鼠标拖放等功能.在WebDriver中,将这些关于鼠标操作的方法封装在ActionC ...