BZOJ2219 数论之神 数论 中国剩余定理 原根 BSGS
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2219.html
题目传送门 - BZOJ2219
题意
求同余方程 $x^A\equiv B \pmod{C}$ 的解的个数,其中 $C$ 为一个奇数。
$1\leq A,B\leq 10^9,1\leq \lfloor C/2 \rfloor \leq 5\times 10^8$
题解
UPD(2018-09-10):
详见数论总结。
传送门 - https://www.cnblogs.com/zhouzhendong/p/Number-theory-Residue-System.html
代码
#include <bits/stdc++.h>
using namespace std;
const int N=100005;
int read(){
int x=0;
char ch=getchar();
while (!isdigit(ch))
ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return x;
}
int pcnt,f[N],Prime[N];
void Get_Prime(int n){
memset(f,0,sizeof f);
pcnt=0;
for (int i=2;i<=n;i++){
if (f[i])
continue;
Prime[++pcnt]=i;
for (int j=i+i;j<=n;j+=i)
f[j]=1;
}
}
void Divide(int x,int *p,int *q,int &cnt){
cnt=0;
for (int i=1;i<=pcnt&&Prime[i]*Prime[i]<=x;i++){
if (x%Prime[i])
continue;
p[++cnt]=Prime[i],q[cnt]=0;
while (x%p[cnt]==0)
x/=p[cnt],q[cnt]++;
}
if (x>1)
p[++cnt]=x,q[cnt]=1;
}
int Pow(int x,int y,int mod){
int ans=1;
for (;y;y>>=1,x=1LL*x*x%mod)
if (y&1)
ans=1LL*ans*x%mod;
return ans;
}
int Pow(int x,int y){
return Pow(x,y,2e9);
}
int gcd(int a,int b){
return b?gcd(b,a%b):a;
}
int Fac[50],Fac_cnt=0;
bool Get_g_Check(int P,int C,int x){
int phi=Pow(P,C-1)*(P-1),pw=Pow(P,C);
if (C>1&&Pow(x,phi/P,pw)==1)
return 0;
for (int i=1;i<=Fac_cnt;i++)
if (Pow(x,phi/Fac[i],pw)==1)
return 0;
return 1;
}
int Get_g(int P,int C){
int v=P-1;
Fac_cnt=0;
for (int i=1;i<=pcnt&&Prime[i]*Prime[i]<=v;i++)
if (v%Prime[i]==0){
Fac[++Fac_cnt]=Prime[i];
while (v%Prime[i]==0)
v/=Prime[i];
}
if (v>1)
Fac[++Fac_cnt]=v;
for (int i=2;;i++)
if (Get_g_Check(P,C,i))
return i;
return -1;
}
struct hash_map{
static const int Ti=233,mod=1<<16;
int cnt,k[mod+1],v[mod+1],nxt[mod+1],fst[mod+1];
int Hash(int x){
int v=x&(mod-1);
return v==0?mod:v;
}
void clear(){
cnt=0;
memset(fst,0,sizeof fst);
}
void update(int x,int a){
int y=Hash(x);
for (int p=fst[y];p;p=nxt[p])
if (k[p]==x){
v[p]=a;
return;
}
k[++cnt]=x,nxt[cnt]=fst[y],fst[y]=cnt,v[cnt]=a;
return;
}
int find(int x){
int y=Hash(x);
for (int p=fst[y];p;p=nxt[p])
if (k[p]==x)
return v[p];
return 0;
}
int &operator [] (int x){
int y=Hash(x);
for (int p=fst[y];p;p=nxt[p])
if (k[p]==x)
return v[p];
k[++cnt]=x,nxt[cnt]=fst[y],fst[y]=cnt;
return v[cnt]=0;
}
}Map;
int BSGS(int A,int B,int P){
int M=max((int)(0.8*sqrt(1.0*P)),1),AM=Pow(A,M,P);
Map.clear();
for (int b=0,pw=B;b<M;b++,pw=1LL*pw*A%P)
Map.update(pw,b+1);
for (int a=M,pw=AM;a-M<P;a+=M,pw=1LL*pw*AM%P){
int v=Map.find(pw);
if (v)
return a-(v-1);
}
return -1;
}
int RHD(int A,int B,int P,int C){
int g=Get_g(P,C);
int t=BSGS(g,B,Pow(P,C));
int mod=(P-1)*Pow(P,C-1);
int GCD=gcd(mod,gcd(A,t));
return gcd(A,mod)>GCD?0:GCD;
}
int solve(int A,int B,int P,int C){
int pw=Pow(P,C),Phi=(P-1)*Pow(P,C-1);
B%=pw;
if (B==0)
return Pow(P,C-((C+A-1)/A));
int g=gcd(B,pw),Q=0;
B/=g;
while (g>1)
g/=P,Q++;
return Pow(P,Q-Q/A)*((Q%A)?0:RHD(A,B,P,C-Q));
}
int main(){
Get_Prime(1e5);
int T=read();
while (T--){
int A=read(),B=read(),P=2*read()+1;
int cnt,p[50],q[50];
Divide(P,p,q,cnt);
int ans=1;
for (int i=1;i<=cnt;i++)
ans*=solve(A,B,p[i],q[i]);
printf("%d\n",ans);
}
return 0;
}
BZOJ2219 数论之神 数论 中国剩余定理 原根 BSGS的更多相关文章
- 51Nod1123 X^A Mod B 数论 中国剩余定理 原根 BSGS
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1123.html 题目传送门 - 51Nod1123 题意 $T$ 组数据. 给定 $A,B,C$,求 ...
- BZOJ2219数论之神——BSGS+中国剩余定理+原根与指标+欧拉定理+exgcd
题目描述 在ACM_DIY群中,有一位叫做“傻崽”的同学由于在数论方面造诣很高,被称为数轮之神!对于任何数论问题,他都能瞬间秒杀!一天他在群里面问了一个神题: 对于给定的3个非负整数 A,B,K 求出 ...
- 【BZOJ】【2219】数论之神
中国剩余定理+原根+扩展欧几里得+BSGS 题解:http://blog.csdn.net/regina8023/article/details/44863519 新技能get√: LL Get_yu ...
- bzoj2219: 数论之神
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- 【中国剩余定理】【容斥原理】【快速乘法】【数论】HDU 5768 Lucky7
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 题目大意: T组数据,求L~R中满足:1.是7的倍数,2.对n个素数有 %pi!=ai 的数 ...
- 数论F - Strange Way to Express Integers(不互素的的中国剩余定理)
F - Strange Way to Express Integers Time Limit:1000MS Memory Limit:131072KB 64bit IO Format: ...
- 中国剩余定理(CRT)与欧拉函数[数论]
中国剩余定理 ——!x^n+y^n=z^n 想必大家都听过同余方程这种玩意,但是可能对于中国剩余定理有诸多不解,作为一个MOer&OIer,在此具体说明. 对于同余方程: x≡c1(mod m ...
- BZOJ1951 [Sdoi2010]古代猪文 中国剩余定理 快速幂 数论
原文链接http://www.cnblogs.com/zhouzhendong/p/8109156.html 题目传送门 - BZOJ1951 题意概括 求 GM mod 999911659 M=∑i ...
- POJ 2891 Strange Way to Express Integers 中国剩余定理 数论 exgcd
http://poj.org/problem?id=2891 题意就是孙子算经里那个定理的基础描述不过换了数字和约束条件的个数…… https://blog.csdn.net/HownoneHe/ar ...
随机推荐
- Win7开机卡在Windows Update 35%的解决办法
一台Win7老机器,多年未清理,用DISM++清理后,开机重启一直卡在Windows Update 35%转圈圈数小时,无法进入系统. 强制按关机键,F8进入安全模式依然同样现象. 查阅MSDN后,有 ...
- MVC异步方法
在mvc的开发过程中,有时候我们会需要在action中调用异步方法,这个时候会需要做一些特殊处理.我们会使用到await和async.对应的controller也应该是async的. 在MVC4中直接 ...
- 【原创】大叔经验分享(32)docker挂载文件修改生效
docker经常需要挂载文件到容器中,比如启动nginx # docker run -d --name test_nginx -v /tmp/nginx.conf:/etc/nginx/nginx.c ...
- ubuntu18.04安装xmind8
1.先去官网下载:https://www.xmind.net/download/xmind8/ 2.默认下载到/home/guojihai/下载/目录下然后把xmind-8-update8-linux ...
- FormData中delete方法在ios不兼容
1.移动端直接用的input的file上传图片(name=“file”必填) <input type="file" id="exampleInputFile1&qu ...
- Confluence 6 企业环境或者网站托管的 Java 配置策略
Confluence 需要依赖一些 Java 的库才能够允运行.一些依赖的 Java 库应用了 Java 的语言特性,但是又是被 Java 的安全策略所限制的. 这个通常来说是不会造成任何问题的.默认 ...
- Confluence 6 数据库表-空间(Spaces)
这个表格与空间的管理有关. spaces 有关空间使用的信息:key,空间的名称和数字 ID. https://www.cwiki.us/display/CONF6ZH/Confluence+Data ...
- Vue2.0 新手完全填坑攻略—从环境搭建到发布
http://www.open-open.com/lib/view/open1476240930270.html https://jingyan.baidu.com/article/91f5db1b2 ...
- nodejs之glob与globby
glob glob允许使用规则,从而获取对应规则匹配的文件.这个glob工具基于javascript.它使用了 minimatch 库来进行匹配 安装 npm install glob 引入 cons ...
- Java并发编程基础-ReentrantLock的机制
同步锁: 我们知道,锁是用来控制多个线程访问共享资源的方式,一般来说,一个锁能够防止多个线程同时访问共享资源,在Lock接口出现之前,Java应用程序只能依靠synchronized关键字来实现同步锁 ...