[CQOI2017]老C的键盘
[CQOI2017]老C的键盘
额,网上题解好像都是用的一大堆组合数,然而我懒得推公式。
设\(f[i][j]\)表示以\(i\)为根,且\(i\)的权值为\(j\)的方案数。
转移:
\]
需要判断一下\(k,q\)与\(j\)的关系满不满足题意就行了。
但是这样的答案显然不对,因为有些权值可能多次出现。
换句话说,有些权值可能没有出现。所以我们就用那个经典的容斥,枚举颜色数上界。
设\(g[s]\)表示颜色数最多为\(s\)的方案数,则\(\displaystyle ans=\sum_{s=1}^n (-1)^{n-s}C_n^sg[s]\)。
代码:
#include<bits/stdc++.h>
#define ll long long
#define N 105
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
const ll mod=1e9+7;
int n;
char s[N];
int f[N][N];
int c[N][N];
int Mod(int a) {return a<0?a+mod:(a<mod?a:a-mod);}
int g[N][2];
int ans;
void update(int v,int sn,int flag,int sum) {
if(s[sn]=='<') {
for(int j=1;j<=sum;j++) g[j][flag]=Mod(g[j-1][flag]+f[sn][j-1]);
} else {
for(int j=sum;j>=1;j--) g[j][flag]=Mod(g[j+1][flag]+f[sn][j+1]);
}
}
int work(int sum) {
memset(f,0,sizeof(f));
for(int i=n;i>=1;i--) {
memset(g,0,sizeof(g));
if(i*2<=n) update(i,i<<1,0,sum);
else for(int j=1;j<=sum;j++) g[j][0]=1;
if(i*2+1<=n) update(i,i<<1|1,1,sum);
else for(int j=1;j<=sum;j++) g[j][1]=1;
for(int j=1;j<=sum;j++) f[i][j]=1ll*g[j][0]*g[j][1]%mod;
}
int ans=0;
for(int i=1;i<=sum;i++) ans=Mod(ans+f[1][i]);
return ans;
}
int main() {
n=Get();
for(int i=0;i<=n;i++)
for(int j=0;j<=i;j++)
c[i][j]=(!j||i==j)?1:Mod(c[i-1][j-1]+c[i-1][j]);
scanf("%s",s+2);
int flag=1;
for(int i=n;i>=1;i--,flag*=-1) {
ans=(ans+flag*1ll*c[n][i]*work(i)%mod+mod)%mod;
}
cout<<ans;
return 0;
}
[CQOI2017]老C的键盘的更多相关文章
- [BZOJ4824][Cqoi2017]老C的键盘 树形dp+组合数
4824: [Cqoi2017]老C的键盘 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 218 Solved: 171[Submit][Statu ...
- [BZOJ4824][CQOI2017]老C的键盘(树形DP)
4824: [Cqoi2017]老C的键盘 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 193 Solved: 149[Submit][Statu ...
- bzoj 4824: [Cqoi2017]老C的键盘
Description 老 C 是个程序员. 作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序 在某种神奇力量的驱使之下跑得非常快.小 ...
- [bzoj4824][Cqoi2017]老C的键盘
来自FallDream的博客,未经允许,请勿转载,谢谢. 老 C 是个程序员. 作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序在某种 ...
- [bzoj4824][洛谷P3757][Cqoi2017]老C的键盘
Description 老 C 是个程序员. 作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序 在某种神奇力量的驱使之下跑得非常快.小 Q 也 ...
- Luogu P3757 [CQOI2017]老C的键盘
题目描述 老C的键盘 题解 显然对于每个数 x 都有唯一对应的 \(x/2\) , 然而对于每个数 x 却可以成为 \(x*2\) 和 \(x*2+1\) 的对应数 根据这一特性想到了啥??? 感谢l ...
- 洛谷 P3757 [CQOI2017]老C的键盘
题面 luogu 题解 其实就是一颗二叉树 我们假设左儿子小于根,右儿子大于根 考虑树形\(dp\) \(f[u][i]\)表示以\(u\)为根的子树,\(u\)为第\(i\)小 那么考虑子树合并 其 ...
- BZOJ3167/BZOJ4824 HEOI2013SAO/CQOI2017老C的键盘(树形dp)
前者是后者各方面的强化版. 容易想到设f[i][j]表示i子树中第j小的是i的方案数(即只考虑相对关系).比较麻烦的在于转移.考虑逐个合并子树.容易想到枚举根原来的排名和子树根原来的排名,算一发组合数 ...
- 【题解】CQOI2017老C的键盘
建议大家还是不要阅读此文了,因为我觉得这题我的解法实在是又不高效又不优美……只是想要记录一下,毕竟是除了中国象棋之外自己做出的组合dp第一题~ 首先如果做题做得多,比较熟练的话,应该能一眼看出这题所给 ...
随机推荐
- ES5、ES2015、ECMAScript6(转载)
阮一峰博客系列: http://es6.ruanyifeng.com/#README
- C#程序实现软件开机自动启动的两种常用方法
C#/WPF/WinForm/.NET程序代码实现软件程序开机自动启动的两种常用方法函数的示例与实例带详细注释 方法一:将软件的快捷方式创建到计算机的自动启动目录下(不需要管理员权限) 1.必要引用 ...
- php获取服务器信息常用方法(零碎知识记忆)
突然整理下零碎小知识.......加深下印象: $info = array( '操作系统'=>PHP_OS, '运行环境'=>$_SERVER["SERVER_SOFTWARE& ...
- 10.QT-定时器
QObject定时器 需要头文件#include <QTimerEvent> 需要函数 int QObject::startTimer(int interval); //启动定时器,并设 ...
- 【Java每日一题】20170209
20170208问题解析请点击今日问题下方的“[Java每日一题]20170209”查看(问题解析在公众号首发,公众号ID:weknow619) package Feb2017; public cla ...
- kafka指定partition的分区规则
博客地址:https://www.cnblogs.com/gnivor/p/5318319.html
- react学习(三)之生命周期/refs/受控组件 篇
挂载/卸载 //在类组件中 class Clock extends React.Component { constructor(props) { super(props); this.state = ...
- Git命令使用小结
一.上传你的代码的基本方式 0.在github网站上登录你的账户cynthiawupore,然后新建一个仓库demo 1.初始化 $ git init 2.添加文件夹下所有文件到仓库 $ git ad ...
- 腾讯.NET&PHP面试题
在整个面试过程中,作为面试者的你,角色就是小怪兽,面试官的角色则是奥特曼,更不幸的是,作为小怪兽的你是孤身一人,而奥特曼却往往有好几个助攻,你总是被虐得不要不要的~ 作为复读一年才考上专科的我,遗憾的 ...
- ASP.NET MVC Json的序列化和反序列化
1.利用js进行序列化成字符串和反序列化 var personObj = {name:"Tom",age:16}; // 利用JS序列化成字符串 var personStr = J ...