用于文本分类的多层注意力模型(Hierachical Attention Nerworks)
论文来源:Hierarchical Attention Networks for Document Classification
1、概述
文本分类时NLP应用中最基本的任务,从之前的机器学习到现在基于词表示的神经网络模型,分类准确度也有了很大的提升。本文基于前人的思想引入多层注意力网络来更多的关注文本的上下文结构。
2、模型结构
多层注意力网络(HAN)的结构如下图所示:
整个网络结构包括四个部分:
1)词序列编码器
2)基于词级的注意力层
3)句子编码器
4)基于句子级的注意力层
整个网络结构由双向GRU网络和注意力机制组合而成,具体的网络结构公式如下:
1)词序列编码器
给定一个句子中的单词 $w_{it}$ ,其中 $i$ 表示第 $i$ 个句子,$t$ 表示第 $t$ 个词。通过一个词嵌入矩阵 $W_e$ 将单词转换成向量表示,具体如下所示:
$ x_{it} = W_e; w_{it}$
接下来看看利用双向GRU实现的整个编码流程:
最终的 $h_{it} = [{\rightarrow{h}}_{it}, \leftarrow{h}_{it}]$ 。
2)词级的注意力层
注意力层的具体流程如下:
上面式子中,$u_{it}$ 是 $h_{it}$ 的隐层表示,$a_{it}$ 是经 $softmax$ 函数处理后的归一化权重系数,$u_w$ 是一个随机初始化的向量,之后会作为模型的参数一起被训练,$s_i$ 就是我们得到的第 $i$ 个句子的向量表示。
3)句子编码器
也是基于双向GRU实现编码的,其流程如下,
公式和词编码类似,最后的 $h_i$ 也是通过拼接得到的
4)句子级注意力层
注意力层的流程如下,和词级的一致
最后得到的向量 $v$ 就是文档的向量表示,这是文档的高层表示。接下来就可以用可以用这个向量表示作为文档的特征。
3、分类
直接用 $ softmax$ 函数进行多分类即可
损失函数如下:
用于文本分类的多层注意力模型(Hierachical Attention Nerworks)的更多相关文章
- 用于文本分类的RNN-Attention网络
用于文本分类的RNN-Attention网络 https://blog.csdn.net/thriving_fcl/article/details/73381217 Attention机制在NLP上最 ...
- 文本分类实战(五)—— Bi-LSTM + Attention模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 将迁移学习用于文本分类 《 Universal Language Model Fine-tuning for Text Classification》
将迁移学习用于文本分类 < Universal Language Model Fine-tuning for Text Classification> 2018-07-27 20:07:4 ...
- 文本分类实战(六)—— RCNN模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 深度学习之文本分类模型-前馈神经网络(Feed-Forward Neural Networks)
目录 DAN(Deep Average Network) Fasttext fasttext文本分类 fasttext的n-gram模型 Doc2vec DAN(Deep Average Networ ...
- 文本分类实战(八)—— Transformer模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(七)—— Adversarial LSTM模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(四)—— Bi-LSTM模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(三)—— charCNN模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
随机推荐
- jQuery根据元素值或元素下标来删除一个数组元素及数组对象方法列表
在前提不知道b在这个数组的下标,删除b这个元素 var arrList = ['a','b','c','d']; arrList.splice(jQuery.inArray('b', ...
- JavaScript学习备忘
1.您只能在 HTML 输出流中使用 document.write 如果在文档已加载后使用它(比如在函数中),会覆盖整个文档 2.数组 : [40, 100, 1, 5, 25, 10] <== ...
- ambari 卸载脚本
#!/bin/bash # Program: # uninstall ambari automatic PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bi ...
- vue 构建项目遇到的请求本地json问题
在本地测试的json没有问题,但是打包后,发现json 的路径不对了,变成了绝对路径 解决方法: 建立的json文件需要放置 根目录/static下.如项目名/static/data.json,这边 ...
- virtualbbox centos7 NAT模式外网 Host-only Adapter模式联网 双网卡
1.下载oracle VM virtualbox centos7 1.1. 下载地址:https://www.virtualbox.org/wiki/Downloads https://www.ce ...
- jquery hover事件只触发一次动画
最近工作时遇到个关于动画的问题,如下: $("div").hover( function() { $(this).animate({"margin-top":& ...
- The operation could not be performed because OLE DB provider "SQLNCLI11" for linked server "SDSSDFCC...
The operation could not be performed because OLE DB provider "SQLNCLI11" for linked server ...
- Hive中笔记 :三种去重方法,distinct,group by与ROW_Number()窗口函数
一.distinct,group by与ROW_Number()窗口函数使用方法 1. Distinct用法:对select 后面所有字段去重,并不能只对一列去重. (1)当distinct应用到多个 ...
- HTTP与TCP的区别和联系
工作原理(转载): https://www.cnblogs.com/zimohul/p/6506406.html 相信不少初学手机联网开发的朋友都想知道Http与Socket连接究竟有什么区别,希望通 ...
- 安全之路 —— 利用APC队列实现跨进程注入
简介 在之前的文章中笔者曾经为大家介绍过使用CreateRemoteThread函数来实现远程线程注入(链接),毫无疑问最经典的注入方式,但也因为如此,这种方式到今天已经几乎被所有安全软件所防御.所以 ...