用于文本分类的多层注意力模型(Hierachical Attention Nerworks)
论文来源:Hierarchical Attention Networks for Document Classification
1、概述
文本分类时NLP应用中最基本的任务,从之前的机器学习到现在基于词表示的神经网络模型,分类准确度也有了很大的提升。本文基于前人的思想引入多层注意力网络来更多的关注文本的上下文结构。
2、模型结构
多层注意力网络(HAN)的结构如下图所示:
整个网络结构包括四个部分:
1)词序列编码器
2)基于词级的注意力层
3)句子编码器
4)基于句子级的注意力层
整个网络结构由双向GRU网络和注意力机制组合而成,具体的网络结构公式如下:
1)词序列编码器
给定一个句子中的单词 $w_{it}$ ,其中 $i$ 表示第 $i$ 个句子,$t$ 表示第 $t$ 个词。通过一个词嵌入矩阵 $W_e$ 将单词转换成向量表示,具体如下所示:
$ x_{it} = W_e; w_{it}$
接下来看看利用双向GRU实现的整个编码流程:
最终的 $h_{it} = [{\rightarrow{h}}_{it}, \leftarrow{h}_{it}]$ 。
2)词级的注意力层
注意力层的具体流程如下:
上面式子中,$u_{it}$ 是 $h_{it}$ 的隐层表示,$a_{it}$ 是经 $softmax$ 函数处理后的归一化权重系数,$u_w$ 是一个随机初始化的向量,之后会作为模型的参数一起被训练,$s_i$ 就是我们得到的第 $i$ 个句子的向量表示。
3)句子编码器
也是基于双向GRU实现编码的,其流程如下,
公式和词编码类似,最后的 $h_i$ 也是通过拼接得到的
4)句子级注意力层
注意力层的流程如下,和词级的一致
最后得到的向量 $v$ 就是文档的向量表示,这是文档的高层表示。接下来就可以用可以用这个向量表示作为文档的特征。
3、分类
直接用 $ softmax$ 函数进行多分类即可
损失函数如下:
用于文本分类的多层注意力模型(Hierachical Attention Nerworks)的更多相关文章
- 用于文本分类的RNN-Attention网络
用于文本分类的RNN-Attention网络 https://blog.csdn.net/thriving_fcl/article/details/73381217 Attention机制在NLP上最 ...
- 文本分类实战(五)—— Bi-LSTM + Attention模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 将迁移学习用于文本分类 《 Universal Language Model Fine-tuning for Text Classification》
将迁移学习用于文本分类 < Universal Language Model Fine-tuning for Text Classification> 2018-07-27 20:07:4 ...
- 文本分类实战(六)—— RCNN模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 深度学习之文本分类模型-前馈神经网络(Feed-Forward Neural Networks)
目录 DAN(Deep Average Network) Fasttext fasttext文本分类 fasttext的n-gram模型 Doc2vec DAN(Deep Average Networ ...
- 文本分类实战(八)—— Transformer模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(七)—— Adversarial LSTM模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(四)—— Bi-LSTM模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(三)—— charCNN模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
随机推荐
- constructor C++ example
The constructor for this class could be defined, as usual, as: Rectangle::Rectangle (int x, int y) ...
- elasticsearch概念
1.elasticsearch的核心概念 (1)Near Realtime(NRT):近实时,从写入数据到数据可以被搜索到有一个小延迟(大概1秒):基于es执行搜索和分析可以达到秒级 (2)Clust ...
- thinkphp 3.2 去除调试模式后报错,怎么解决
1.案例一: 最近用ThinkPHP开发一个项目,本地开发测试完成上传到服务器后,第一次打开正常,再刷新页面时就出现 “页面调试错误,无法找开页面,请重试”的错误. 我就郁闷啦,明明本地设置defin ...
- undefined 与 xx is not defined 的区别
undefined 与 xx is not defined 的区别 1. undefined 表示是javascript中的一种数据类型,当被定义的变量没有被赋值或者某个被调用的函数没有定义返回值时候 ...
- SqL读取XML、解析XML、SqL将XML转换DataTable、SqL将XML转换表
DECLARE @ItemMessage XML )) SET @ItemMessage=N' <ReceivablesInfos> <ReceivablesList> < ...
- javascript对象与方法
对象与方法 一.数组(Array) 1.使用new关键字创建数组 var box = new Array(); //创建了一个数 ...
- JavaScript面向对象编程指南(六) 继承
第6章 继承 6.1 原型链 6.1.1原型链示例 原型链法:Child.prototype=new Parent(); <script> function Shape(){ this.n ...
- iOS----------开发中常用的宏有那些
OC对象判断是否为空? 字符串是否为空 #define kStringIsEmpty(str) ([str isKindOfClass:[NSNull class]] || str == nil || ...
- ViewPager实现滑动翻页效果
实现ViewPager的滑动翻页效果可以使用ViewPager的setPageTransformer方法,如下: import android.content.Context; import andr ...
- 设计模式java----单例模式
一.懒汉式单例 在第一次调用的时候实例化自己,Singleton的唯一实例只能通过getInstance()方法访问.线程不安全 /** * Created by Admin on 2017/3/19 ...