【HNOI2013】切糕
【HNOI2013】切糕
Sample Input
2 2 2
1
6 1
6 1
2 6
2 6
Sample Output
6
\(P,Q,R≤40,0≤D≤R\)
参考:https://blog.csdn.net/zarxdy34/article/details/45272055
经典的有距离限制的网络流模型。
首先我们不考虑高度限制。我们直接将图建\(r+1\)层,就是每个格子\((x,y)\)拆成\(r+1\)个点。将它们串成一串,第\(i\)层的向\(i+1\)层连边,第\(i\)条边的容量就是\(v_{x,y,i}\)。然后源点向第\(1\)层的连边,第\(r+1\)层的向汇点连边。最小割就是答案。
考虑怎么将距离限制表示出来。对于所有的格子\((x,y)\),假设是第\(k\)层的图,那么我们向第\(k-d\)层的\((x,y)\)周围的点连\(\infty\)的边。
考虑这么做的合法性。两个相邻的格子\((x,y),(x',y')\),如果我们选了\(v_{x,y,k}\),也就是割断了第\(k\)层\((x,y)\)连出去的边,那么\((x',y')\)选的高度\(k'\)要\(\geq k-D\)。如果\((x',y')\)割断了\(k-D\)以下的边,那么\((x,y)\)和\((x',y')\)之间\(\infty\)的边就会实源点和汇点连通。
代码:
#include<bits/stdc++.h>
#define ll long long
#define N 45
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
const int V=N*N*N;
int n,m,r;
int D;
int v[N][N][N];
int id[N][N];
struct road {
int to,next;
int flow;
}s[V<<3];
int h[V],cnt=1;
void add(int i,int j,int f) {
s[++cnt]=(road) {j,h[i],f};h[i]=cnt;
s[++cnt]=(road) {i,h[j],0};h[j]=cnt;
}
int dx[]={-1,1,0,0},dy[]={0,0,-1,1};
int S,T;
int dis[V];
queue<int>q;
bool bfs() {
memset(dis,0x3f,sizeof(dis));
q.push(S);
dis[S]=0;
while(!q.empty()) {
int v=q.front();
q.pop();
for(int i=h[v];i;i=s[i].next) {
int to=s[i].to;
if(s[i].flow&&dis[to]>dis[v]+1) {
dis[to]=dis[v]+1;
q.push(to);
}
}
}
return dis[T]<1e9;
}
int dfs(int v,int maxf) {
if(v==T) return maxf;
int ret=0;
for(int i=h[v];i;i=s[i].next) {
int to=s[i].to;
if(s[i].flow&&dis[to]==dis[v]+1) {
int dlt=dfs(to,min(maxf,s[i].flow));
s[i].flow-=dlt;
s[i^1].flow+=dlt;
ret+=dlt;
maxf-=dlt;
if(!maxf) return ret;
}
}
return ret;
}
int dinic() {
int ans=0;
while(bfs()) {
while(1) {
int tem=dfs(S,1e9);
if(!tem) break;
ans+=tem;
}
}
return ans;
}
int main() {
n=Get(),m=Get(),r=Get();
D=Get();
for(int k=1;k<=r;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
v[i][j][k]=Get();
int tot=n*m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
id[i][j]=(i-1)*m+j;
T=(r+1)*tot+1;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
add(S,id[i][j],1e9),add(id[i][j]+r*tot,T,1e9);
for(int k=1;k<=r;k++) {
for(int i=1;i<=n;i++) {
for(int j=1;j<=m;j++) {
add((k-1)*tot+id[i][j],k*tot+id[i][j],v[i][j][k]);
if(k>D) {
int nxt=k-D;
for(int d=0;d<4;d++) {
int a=i+dx[d],b=j+dy[d];
if(a<1||a>n||b<1||b>m) continue ;
add((k-1)*tot+id[i][j],(nxt-1)*tot+id[a][b],1e9);
}
}
}
}
}
cout<<dinic();
return 0;
}
【HNOI2013】切糕的更多相关文章
- BZOJ 3144: [Hnoi2013]切糕
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1495 Solved: 819[Submit][Status] ...
- bzoj 3144: [Hnoi2013]切糕 最小割
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 681 Solved: 375[Submit][Status] ...
- BZOJ_3144_[Hnoi2013]切糕_最小割
BZOJ_3144_[Hnoi2013]切糕_最小割 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R ...
- bzoj千题计划142:bzoj3144: [Hnoi2013]切糕
http://www.lydsy.com/JudgeOnline/problem.php?id=3144 如果D=2 ,两个点,高度为4,建图如下 #include<queue> #inc ...
- 【BZOJ3144】[HNOI2013]切糕
[BZOJ3144][HNOI2013]切糕 题面 题目描述 经过千辛万苦小 A 得到了一块切糕,切糕的形状是长方体,小 A 打算拦腰将切糕切成两半分给小 B.出于美观考虑,小 A 希望切面能尽量光滑 ...
- 【BZOJ 3144】 3144: [Hnoi2013]切糕 (最小割模型)
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1764 Solved: 965 Description Inp ...
- BZOJ3144 Hnoi2013 切糕 【网络流】*
BZOJ3144 Hnoi2013 切糕 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的 ...
- 【BZOJ3144】[Hnoi2013]切糕 最小割
[BZOJ3144][Hnoi2013]切糕 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q ...
- 3144: [Hnoi2013]切糕
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1526 Solved: 827[Submit][Status] ...
- bzoj3144 [HNOI2013]切糕(最小割)
bzoj3144 [HNOI2013]切糕(最小割) bzoj Luogu 题面描述见上 题解时间 一开始我真就把这玩意所说的切面当成了平面来做的 事实上只是说相邻的切点高度差都不超过 $ d $ 对 ...
随机推荐
- c# 大批量用户访问数据库报错
报错信息:There is already an open DataReader associated with this Connection which must be closed first ...
- spring_03ApplicationContext三种经常用到的实现
1.ClassPathXmlApplicationContext从类路径加载 ApplicationContext ac=new ClassPathXmlApplicationContext(&quo ...
- Elasticsearch系列(2):安装Elasticsearch(Linux环境)
系统环境 操作系统:CentOS 6.9 Elasticsearch:6.2.2 Filebeat:6.2.2(收集IIS日志) Kibana:6.2.2 Java:Java 8 注意:elk最好选择 ...
- C#设计模式之十九策略模式(Stragety Pattern)【行为型】
一.引言 今天我们开始讲“行为型”设计模式的第七个模式,该模式是[策略模式],英文名称是:Stragety Pattern.在现实生活中,策略模式的例子也非常常见,例如,在一个公司中,会有各种工作人员 ...
- check约束
-- 删除表 drop table check_test; -- 不为空,不为null的值只能是0,1(不为空,值只能是0,1) create table check_test( default_fl ...
- JavaScript字符串转换为数字
今天在工作中碰到了一个问题,要将字符串转换为数字,否则函数不能正常工作, 特地研究了下,写了2个函数,供大家参考,代码如下: /** * 将字符串转换为数字 * @param {Object} str ...
- jquery对象和DOM对象的相互转换详解
jquery对象和DOM对象的相互转换 在讨论jquery对象和DOM对象的相互转换之前,先约定好定义变量的风格如果获取的是jquery对象,那么在变量前面加上$,例如 var $varible = ...
- 通过JS生成由字母与数字组合的随机字符串
在项目中可能需要随机生成字母数字组成的字符,如生成3-32位长度的字母数字组合的随机字符串(位数不固定)或者生成43位随机字符串(位数固定) 使用Math.random()与toString()方法的 ...
- 洛谷P3246 [HNOI2016]序列(离线 差分 树状数组)
题意 题目链接 Sol 好像搞出了一个和题解不一样的做法(然而我考场上没写出来还是爆零0) 一个很显然的思路是考虑每个最小值的贡献. 预处理出每个数左边第一个比他小的数,右边第一个比他大的数. 那么\ ...
- Django引入静态文件
在HTML文件中引入方式: 简单引入一个bootstrap中的内敛表单,效果图如下: