逻辑回归 代价函数J关于系数theta求导
J=-y*loga-(1-y)*log(1-a)
梯度下降,求dJ/d_theta_j
逻辑回归 代价函数J关于系数theta求导的更多相关文章
- Machine Learning--week3 逻辑回归函数(分类)、决策边界、逻辑回归代价函数、多分类与(逻辑回归和线性回归的)正则化
Classification It's not a good idea to use linear regression for classification problem. We can use ...
- Logistic Regression(逻辑回归)
分类是机器学习的一个基本问题, 基本原则就是将某个待分类的事情根据其不同特征划分为两类. Email: 垃圾邮件/正常邮件 肿瘤: 良性/恶性 蔬菜: 有机/普通 对于分类问题, 其结果 y∈{0,1 ...
- ML 逻辑回归 Logistic Regression
逻辑回归 Logistic Regression 1 分类 Classification 首先我们来看看使用线性回归来解决分类会出现的问题.下图中,我们加入了一个训练集,产生的新的假设函数使得我们进行 ...
- DeepLearning之路(一)逻辑回归
逻辑回归 1. 总述 逻辑回归来源于回归分析,用来解决分类问题,即预测值变为较少数量的离散值. 2. 基本概念 回归分析(Regression Analysis):存在一堆观测资料,希望获得数据内 ...
- 斯坦福第六课:逻辑回归(Logistic Regression)
6.1 分类问题 6.2 假说表示 6.3 判定边界 6.4 代价函数 6.5 简化的成本函数和梯度下降 6.6 高级优化 6.7 多类分类:一个对所有 6.1 分类问题 在分类问题中 ...
- 大叔学ML第五:逻辑回归
目录 基本形式 代价函数 用梯度下降法求\(\vec\theta\) 扩展 基本形式 逻辑回归是最常用的分类模型,在线性回归基础之上扩展而来,是一种广义线性回归.下面举例说明什么是逻辑回归:假设我们有 ...
- [C2] 逻辑回归(Logistic Regression)
逻辑回归(Logistic Regression) 假设函数(Hypothesis Function) \(h_\theta(x)=g(\theta^Tx)=g(z)=\frac{1}{1+e^{-z ...
- 逻辑回归模型(Logistic Regression, LR)--分类
逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函数,使得逻辑回归模型成为了机器学习领域一颗耀眼的明星,更是计算广告学的核 ...
- 逻辑回归原理,推导,sklearn应用
目录 逻辑回归原理,推导,及sklearn中的使用 1 从线性回归过渡到逻辑回归 2 逻辑回归的损失函数 2.1 逻辑回归损失函数的推导 2.2 梯度下降法 2.3 正则化 3 用逻辑回归进行多分类 ...
随机推荐
- Debian下配置防火墙iptables
debian下iptables输入命令后即时生效,但重启之后配置就会消失,可用iptables-save快速保存配置,因为Debian上iptables是不会保存规则的,然后在开机自动的时候让ipta ...
- 阿里云服务器晚上运行定时任务报Too many connections
1. 相关查询连接数的命令 mysql>show variables like '%max_connections%'; +-------------------------+--------- ...
- ECharts在柱状图的柱子上方显示数量的方法
在setOption()方法中的series配置中加上itemStyle配置 如下: series: [{ name: '人数', type: 'bar', data: [], //x轴对应列的值 i ...
- Previous Workflow Versions in Nintex Workflow
Previous Workflow Versions in Nintex Workflow September 4, 2013 It occurred to me that even though I ...
- vuex2.0 基本使用(4) --- modules
vue 使用的是单一状态树对整个应用的状态进行管理,也就是说,应用中的所有状态都放到store中,如果是一个大型应用,状态非常多, store 就会非常庞大,不太好管理.这时vuex 提供了另外一种方 ...
- [TaskList] 省选前板子补完计划
省选前本子补完计划 [ ] 带权并查集 [ ] 树上莫队 - UOJ58 [WC2013]糖果公园 loj2485「CEOI2017」Chase
- PC平台主要SIMD扩展发展简史
Single Instruction Multiple Data,简称SIMD.SIMD描述的是微处理器中单条指令能完成对数据的并行处理.SIMD所使用的是特殊的寄存器,一个寄存器上存储有多个数据,在 ...
- 【数学建模】day05-微分方程建模
很多问题,归结起来是微分方程(组)求解的问题.比如:为什么使用三级火箭发射卫星.阻滞增长人口模型的建立…… MATLAB提供了良好的微分方程求解方案. 一.MATLAB求微分方程的符号解 matlab ...
- Civil 3d设置横断面图样式
一位网友提出这样一个问题: 在使用SectionView.StyleName属性时, 会抛出异常:need to override property StyleName. 我测试的结果一样, 同时测试 ...
- HTML5-Video视频-基础篇
展示视频 视频 <video width=" controls="controls"> <source src="movie.mp4" ...