题目大意:求$$\sum\limits_{i=1}^ngcd(n,i)$$

题解:发现 gcd 中有很多是重复的,因此考虑枚举 gcd。

\[\sum\limits_{i=1}^ngcd(n,i)=\sum\limits_{d|n}d\sum_{i=1}^n[gcd(i,n)=d]=\sum\limits_{d|n}d\sum_{i=1}^{\lfloor n/d\rfloor}[gcd(i,{n\over d})=1]=\sum\limits_{d|n}d\phi(n/d)
\]

代码如下

#include <bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define all(x) x.begin(),x.end()
#define cls(a,b) memset(a,b,sizeof(a))
#define debug(x) printf("x = %d\n",x)
using namespace std;
typedef long long ll;
typedef pair<int,int> P;
const int dx[]={0,1,0,-1};
const int dy[]={1,0,-1,0};
const int mod=1e9+7;
const int inf=0x3f3f3f3f;
//const int maxn=
const double eps=1e-6;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll sqr(ll x){return x*x;}
inline ll read(){
ll x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
}
/*--------------------------------------------------------*/ ll n; inline ll phi(ll x){
ll ret=x;
for(int i=2;i<=sqrt(x);i++){
if(x%i==0){
ret=ret/i*(i-1);
while(x%i==0)x/=i;
}
}
if(x>1)ret=ret/x*(x-1);
return ret;
}
ll calc(ll x){
ll ret=0;
for(int i=1;i<=sqrt(x);i++){
if(x%i==0){
ret+=(ll)i*phi(x/i);
if(i*i!=x)ret+=(ll)x/i*phi(i);
}
}
return ret;
} void read_and_parse(){
n=read();
} void solve(){
printf("%lld\n",calc(n));
} int main(){
read_and_parse();
solve();
return 0;
}

【P2303】Longge的问题的更多相关文章

  1. [bzoj]2705: [SDOI2012]Longge的问题[数论][数学][欧拉函数][gcd]

    [bzoj]P2705 OR [luogu]P2303 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需 ...

  2. 洛谷 P2303 [SDOi2012]Longge的问题 解题报告

    P2303 [SDOi2012]Longge的问题 题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数\(N\),你需要 ...

  3. P2303 [SDOi2012]Longge的问题

    题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 输入输出格式 输入格式: 一 ...

  4. 洛谷P2303 [SDOi2012]Longge的问题

    题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). ...

  5. luogu P2303 [SDOi2012]Longge的问题

    传送门 \[\sum_{i=1}^{n}\gcd(i,n)\] 考虑枚举所有可能的gcd,可以发现这一定是\(n\)的约数,当\(\gcd(i,n)=x\)时,\(gcd(\frac{i}{x},\f ...

  6. 洛谷P2303 [SDOi2012] Longge的问题 数论

    看懂了题解,太妙了TT但是想解释的话可能要很多数学公式打起来太麻烦了TT所以我就先只放代码具体推演的过程我先写在纸上然后拍下来做成图片放上来算辣quq 好的那我先滚去做题了做完这题就把题解放上来.因为 ...

  7. 【洛谷题解】P2303 [SDOi2012]Longge的问题

    题目传送门:链接. 能自己推出正确的式子的感觉真的很好! 题意简述: 求\(\sum_{i=1}^{n}gcd(i,n)\).\(n\leq 2^{32}\). 题解: 我们开始化简式子: \(\su ...

  8. 【洛谷 P2303】 [SDOi2012]Longge的问题 (欧拉函数)

    题目链接 题意:求\(\sum_{i=1}^{n}\gcd(i,n)\) 首先可以肯定,\(\gcd(i,n)|n\). 所以设\(t(x)\)表示\(gcd(i,n)=x\)的\(i\)的个数. 那 ...

  9. P2303 [SDOI2012]Longge的问题 我傻QwQ

    莫比乌斯反演学傻了$QwQ$ 思路:推式子? 提交:2次 错因:又双叒叕没开$long\space long$ 题解: $\sum_{i=1}^n gcd(i,n)$ $=\sum_{d|n}d\su ...

随机推荐

  1. 微信小程序登录授权并获取手机号

    一.请求发送 携带 code 到后台换取 openid var that = this; wx.login({ success(res) { console.log(res); var code = ...

  2. element-ui 源码解析 一

    Button组件 button.vue <template> <button class="el-button" @click="handleClick ...

  3. vue & iview

    vue & iview ui components https://codepen.io/webgeeker/pen/EJmQxQ https://www.iviewui.com/docs/g ...

  4. video maker & video tutorials

    video maker & video tutorials 视频课程制作工具 https://ke.qq.com/agency/personal/intro.html 成为网络老师 https ...

  5. QTP 自动货测试桌面程序-笔记-运行结果中添加截图

    3种方法: 方法1:使用设置:SnapshotReportMode oldMode = Setting("SnapshotReportMode") Setting("Sn ...

  6. Lodop导出图片和打印机无关,测试是否有关

    Lodop导出的图片,既可以在预览界面另存为,也可以用语句导出.语句导出,可查看本博客的相关博文:Lodop导出图片,导出单页内容的图片 预览的时候,由于选择的打印机不同,而真实的打印机可能有不同的可 ...

  7. MySQL in型子查询陷阱

    现在有两个表,table1和table2,table1有1千万数据(id 主键索引),table2有三条数据(uid字段 3,5,7): select * from table1 where id i ...

  8. 手写事务管理器 也是spring实现事务管理的原理

  9. 提高网络灵活性和效率的组网方式—SD-WAN

    导读 最初,大多数企业只是简单地将软件覆盖添加到广域网连接上.但是,随着时间的推移,由于SD-WAN架构的易配置功能,企业将开始采用SD-WAN更复杂的功能. 广域网一般用于连接多个业务地点,如总部和 ...

  10. 利用random模块生成验证码

    random模块 该模块用于数学或者数据相关的领域,使用方法非常简单下面介绍常用的放法 1.随机小数 random.random() 2.随机整数random.randint(1,5) # 大于等于1 ...