var data = [
{name: '海门', value: 9},
{name: '鄂尔多斯', value: 12},
{name: '招远', value: 12},
{name: '舟山', value: 12},
{name: '齐齐哈尔', value: 14},
{name: '盐城', value: 15},
{name: '赤峰', value: 16},
{name: '青岛', value: 18},
{name: '乳山', value: 18},
{name: '金昌', value: 19},
{name: '泉州', value: 21},
{name: '莱西', value: 21},
{name: '日照', value: 21},
{name: '胶南', value: 22},
{name: '南通', value: 23},
{name: '拉萨', value: 24},
{name: '云浮', value: 24},
{name: '梅州', value: 25},
{name: '文登', value: 25},
{name: '上海', value: 25},
{name: '攀枝花', value: 25},
{name: '威海', value: 25},
{name: '承德', value: 25},
{name: '厦门', value: 26},
{name: '汕尾', value: 26},
{name: '潮州', value: 26},
{name: '丹东', value: 27},
{name: '太仓', value: 27},
{name: '曲靖', value: 27},
{name: '烟台', value: 28},
{name: '福州', value: 29},
{name: '瓦房店', value: 30},
{name: '即墨', value: 30},
{name: '抚顺', value: 31},
{name: '玉溪', value: 31},
{name: '张家口', value: 31},
{name: '阳泉', value: 31},
{name: '莱州', value: 32},
{name: '湖州', value: 32},
{name: '汕头', value: 32},
{name: '昆山', value: 33},
{name: '宁波', value: 33},
{name: '湛江', value: 33},
{name: '揭阳', value: 34},
{name: '荣成', value: 34},
{name: '连云港', value: 35},
{name: '葫芦岛', value: 35},
{name: '常熟', value: 36},
{name: '东莞', value: 36},
{name: '河源', value: 36},
{name: '淮安', value: 36},
{name: '泰州', value: 36},
{name: '南宁', value: 37},
{name: '营口', value: 37},
{name: '惠州', value: 37},
{name: '江阴', value: 37},
{name: '蓬莱', value: 37},
{name: '韶关', value: 38},
{name: '嘉峪关', value: 38},
{name: '广州', value: 38},
{name: '延安', value: 38},
{name: '太原', value: 39},
{name: '清远', value: 39},
{name: '中山', value: 39},
{name: '昆明', value: 39},
{name: '寿光', value: 40},
{name: '盘锦', value: 40},
{name: '长治', value: 41},
{name: '深圳', value: 41},
{name: '珠海', value: 42},
{name: '宿迁', value: 43},
{name: '咸阳', value: 43},
{name: '铜川', value: 44},
{name: '平度', value: 44},
{name: '佛山', value: 44},
{name: '海口', value: 44},
{name: '江门', value: 45},
{name: '章丘', value: 45},
{name: '肇庆', value: 46},
{name: '大连', value: 47},
{name: '临汾', value: 47},
{name: '吴江', value: 47},
{name: '石嘴山', value: 49},
{name: '沈阳', value: 50},
{name: '苏州', value: 50},
{name: '茂名', value: 50},
{name: '嘉兴', value: 51},
{name: '长春', value: 51},
{name: '胶州', value: 52},
{name: '银川', value: 52},
{name: '张家港', value: 52},
{name: '三门峡', value: 53},
{name: '锦州', value: 54},
{name: '南昌', value: 54},
{name: '柳州', value: 54},
{name: '三亚', value: 54},
{name: '自贡', value: 56},
{name: '吉林', value: 56},
{name: '阳江', value: 57},
{name: '泸州', value: 57},
{name: '西宁', value: 57},
{name: '宜宾', value: 58},
{name: '呼和浩特', value: 58},
{name: '成都', value: 58},
{name: '大同', value: 58},
{name: '镇江', value: 59},
{name: '桂林', value: 59},
{name: '张家界', value: 59},
{name: '宜兴', value: 59},
{name: '北海', value: 60},
{name: '西安', value: 61},
{name: '金坛', value: 62},
{name: '东营', value: 62},
{name: '牡丹江', value: 63},
{name: '遵义', value: 63},
{name: '绍兴', value: 63},
{name: '扬州', value: 64},
{name: '常州', value: 64},
{name: '潍坊', value: 65},
{name: '重庆', value: 66},
{name: '台州', value: 67},
{name: '南京', value: 67},
{name: '滨州', value: 70},
{name: '贵阳', value: 71},
{name: '无锡', value: 71},
{name: '本溪', value: 71},
{name: '克拉玛依', value: 72},
{name: '渭南', value: 72},
{name: '马鞍山', value: 72},
{name: '宝鸡', value: 72},
{name: '焦作', value: 75},
{name: '句容', value: 75},
{name: '北京', value: 79},
{name: '徐州', value: 79},
{name: '衡水', value: 80},
{name: '包头', value: 80},
{name: '绵阳', value: 80},
{name: '乌鲁木齐', value: 84},
{name: '枣庄', value: 84},
{name: '杭州', value: 84},
{name: '淄博', value: 85},
{name: '鞍山', value: 86},
{name: '溧阳', value: 86},
{name: '库尔勒', value: 86},
{name: '安阳', value: 90},
{name: '开封', value: 90},
{name: '济南', value: 92},
{name: '德阳', value: 93},
{name: '温州', value: 95},
{name: '九江', value: 96},
{name: '邯郸', value: 98},
{name: '临安', value: 99},
{name: '兰州', value: 99},
{name: '沧州', value: 100},
{name: '临沂', value: 103},
{name: '南充', value: 104},
{name: '天津', value: 105},
{name: '富阳', value: 106},
{name: '泰安', value: 112},
{name: '诸暨', value: 112},
{name: '郑州', value: 113},
{name: '哈尔滨', value: 114},
{name: '聊城', value: 116},
{name: '芜湖', value: 117},
{name: '唐山', value: 119},
{name: '平顶山', value: 119},
{name: '邢台', value: 119},
{name: '德州', value: 120},
{name: '济宁', value: 120},
{name: '荆州', value: 127},
{name: '宜昌', value: 130},
{name: '义乌', value: 132},
{name: '丽水', value: 133},
{name: '洛阳', value: 134},
{name: '秦皇岛', value: 136},
{name: '株洲', value: 143},
{name: '石家庄', value: 147},
{name: '莱芜', value: 148},
{name: '常德', value: 152},
{name: '保定', value: 153},
{name: '湘潭', value: 154},
{name: '金华', value: 157},
{name: '岳阳', value: 169},
{name: '长沙', value: 175},
{name: '衢州', value: 177},
{name: '廊坊', value: 193},
{name: '菏泽', value: 194},
{name: '合肥', value: 229},
{name: '武汉', value: 273},
{name: '大庆', value: 279}
];
var geoCoordMap = {
'海门':[121.15,31.89],
'鄂尔多斯':[109.781327,39.608266],
'招远':[120.38,37.35],
'舟山':[122.207216,29.985295],
'齐齐哈尔':[123.97,47.33],
'盐城':[120.13,33.38],
'赤峰':[118.87,42.28],
'青岛':[120.33,36.07],
'乳山':[121.52,36.89],
'金昌':[102.188043,38.520089],
'泉州':[118.58,24.93],
'莱西':[120.53,36.86],
'日照':[119.46,35.42],
'胶南':[119.97,35.88],
'南通':[121.05,32.08],
'拉萨':[91.11,29.97],
'云浮':[112.02,22.93],
'梅州':[116.1,24.55],
'文登':[122.05,37.2],
'上海':[121.48,31.22],
'攀枝花':[101.718637,26.582347],
'威海':[122.1,37.5],
'承德':[117.93,40.97],
'厦门':[118.1,24.46],
'汕尾':[115.375279,22.786211],
'潮州':[116.63,23.68],
'丹东':[124.37,40.13],
'太仓':[121.1,31.45],
'曲靖':[103.79,25.51],
'烟台':[121.39,37.52],
'福州':[119.3,26.08],
'瓦房店':[121.979603,39.627114],
'即墨':[120.45,36.38],
'抚顺':[123.97,41.97],
'玉溪':[102.52,24.35],
'张家口':[114.87,40.82],
'阳泉':[113.57,37.85],
'莱州':[119.942327,37.177017],
'湖州':[120.1,30.86],
'汕头':[116.69,23.39],
'昆山':[120.95,31.39],
'宁波':[121.56,29.86],
'湛江':[110.359377,21.270708],
'揭阳':[116.35,23.55],
'荣成':[122.41,37.16],
'连云港':[119.16,34.59],
'葫芦岛':[120.836932,40.711052],
'常熟':[120.74,31.64],
'东莞':[113.75,23.04],
'河源':[114.68,23.73],
'淮安':[119.15,33.5],
'泰州':[119.9,32.49],
'南宁':[108.33,22.84],
'营口':[122.18,40.65],
'惠州':[114.4,23.09],
'江阴':[120.26,31.91],
'蓬莱':[120.75,37.8],
'韶关':[113.62,24.84],
'嘉峪关':[98.289152,39.77313],
'广州':[113.23,23.16],
'延安':[109.47,36.6],
'太原':[112.53,37.87],
'清远':[113.01,23.7],
'中山':[113.38,22.52],
'昆明':[102.73,25.04],
'寿光':[118.73,36.86],
'盘锦':[122.070714,41.119997],
'长治':[113.08,36.18],
'深圳':[114.07,22.62],
'珠海':[113.52,22.3],
'宿迁':[118.3,33.96],
'咸阳':[108.72,34.36],
'铜川':[109.11,35.09],
'平度':[119.97,36.77],
'佛山':[113.11,23.05],
'海口':[110.35,20.02],
'江门':[113.06,22.61],
'章丘':[117.53,36.72],
'肇庆':[112.44,23.05],
'大连':[121.62,38.92],
'临汾':[111.5,36.08],
'吴江':[120.63,31.16],
'石嘴山':[106.39,39.04],
'沈阳':[123.38,41.8],
'苏州':[120.62,31.32],
'茂名':[110.88,21.68],
'嘉兴':[120.76,30.77],
'长春':[125.35,43.88],
'胶州':[120.03336,36.264622],
'银川':[106.27,38.47],
'张家港':[120.555821,31.875428],
'三门峡':[111.19,34.76],
'锦州':[121.15,41.13],
'南昌':[115.89,28.68],
'柳州':[109.4,24.33],
'三亚':[109.511909,18.252847],
'自贡':[104.778442,29.33903],
'吉林':[126.57,43.87],
'阳江':[111.95,21.85],
'泸州':[105.39,28.91],
'西宁':[101.74,36.56],
'宜宾':[104.56,29.77],
'呼和浩特':[111.65,40.82],
'成都':[104.06,30.67],
'大同':[113.3,40.12],
'镇江':[119.44,32.2],
'桂林':[110.28,25.29],
'张家界':[110.479191,29.117096],
'宜兴':[119.82,31.36],
'北海':[109.12,21.49],
'西安':[108.95,34.27],
'金坛':[119.56,31.74],
'东营':[118.49,37.46],
'牡丹江':[129.58,44.6],
'遵义':[106.9,27.7],
'绍兴':[120.58,30.01],
'扬州':[119.42,32.39],
'常州':[119.95,31.79],
'潍坊':[119.1,36.62],
'重庆':[106.54,29.59],
'台州':[121.420757,28.656386],
'南京':[118.78,32.04],
'滨州':[118.03,37.36],
'贵阳':[106.71,26.57],
'无锡':[120.29,31.59],
'本溪':[123.73,41.3],
'克拉玛依':[84.77,45.59],
'渭南':[109.5,34.52],
'马鞍山':[118.48,31.56],
'宝鸡':[107.15,34.38],
'焦作':[113.21,35.24],
'句容':[119.16,31.95],
'北京':[116.46,39.92],
'徐州':[117.2,34.26],
'衡水':[115.72,37.72],
'包头':[110,40.58],
'绵阳':[104.73,31.48],
'乌鲁木齐':[87.68,43.77],
'枣庄':[117.57,34.86],
'杭州':[120.19,30.26],
'淄博':[118.05,36.78],
'鞍山':[122.85,41.12],
'溧阳':[119.48,31.43],
'库尔勒':[86.06,41.68],
'安阳':[114.35,36.1],
'开封':[114.35,34.79],
'济南':[117,36.65],
'德阳':[104.37,31.13],
'温州':[120.65,28.01],
'九江':[115.97,29.71],
'邯郸':[114.47,36.6],
'临安':[119.72,30.23],
'兰州':[103.73,36.03],
'沧州':[116.83,38.33],
'临沂':[118.35,35.05],
'南充':[106.110698,30.837793],
'天津':[117.2,39.13],
'富阳':[119.95,30.07],
'泰安':[117.13,36.18],
'诸暨':[120.23,29.71],
'郑州':[113.65,34.76],
'哈尔滨':[126.63,45.75],
'聊城':[115.97,36.45],
'芜湖':[118.38,31.33],
'唐山':[118.02,39.63],
'平顶山':[113.29,33.75],
'邢台':[114.48,37.05],
'德州':[116.29,37.45],
'济宁':[116.59,35.38],
'荆州':[112.239741,30.335165],
'宜昌':[111.3,30.7],
'义乌':[120.06,29.32],
'丽水':[119.92,28.45],
'洛阳':[112.44,34.7],
'秦皇岛':[119.57,39.95],
'株洲':[113.16,27.83],
'石家庄':[114.48,38.03],
'莱芜':[117.67,36.19],
'常德':[111.69,29.05],
'保定':[115.48,38.85],
'湘潭':[112.91,27.87],
'金华':[119.64,29.12],
'岳阳':[113.09,29.37],
'长沙':[113,28.21],
'衢州':[118.88,28.97],
'廊坊':[116.7,39.53],
'菏泽':[115.480656,35.23375],
'合肥':[117.27,31.86],
'武汉':[114.31,30.52],
'大庆':[125.03,46.58]
}; var convertData = function (data) {
var res = [];
for (var i = 0; i < data.length; i++) {
var geoCoord = geoCoordMap[data[i].name];
if (geoCoord) {
res.push({
name: data[i].name,
value: geoCoord.concat(data[i].value)
});
}
}
return res;
};
console.log(convertData(data))

打印:

(190) [{…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, …]

  1. [0 … 99]
    1. 0:
      1. name:"海门"
      2. value:Array(3)
        1. 0:121.15
        2. 1:31.89
        3. 2:9
        4. length:3
        5. __proto__:Array(0)
      3. __proto__:Object
    2. 1:
      1. name:"鄂尔多斯"
      2. value:Array(3)
        1. 0:109.781327
        2. 1:39.608266
        3. 2:12
        4. length:3
        5. __proto__:Array(0)
      3. __proto__:Object
    3. 2:
      1. name:"招远"
      2. value:Array(3)
        1. 0:120.38
        2. 1:37.35
        3. 2:12
        4. length:3
        5. __proto__:Array(0)
      3. __proto__:Object
    4. 3:{name: "舟山", value: Array(3)}
    5. 4:{name: "齐齐哈尔", value: Array(3)}
    6. 5:{name: "盐城", value: Array(3)}
    7. 6:{name: "赤峰", value: Array(3)}
    8. 7:{name: "青岛", value: Array(3)}
    9. 8:{name: "乳山", value: Array(3)}
    10. 9:{name: "金昌", value: Array(3)}
    11. 10:{name: "泉州", value: Array(3)}
    12. 11:{name: "莱西", value: Array(3)}
    13. 12:{name: "日照", value: Array(3)}
    14. 13:{name: "胶南", value: Array(3)}
    15. 14:{name: "南通", value: Array(3)}
    16. 15:{name: "拉萨", value: Array(3)}
    17. 16:{name: "云浮", value: Array(3)}
    18. 17:{name: "梅州", value: Array(3)}
    19. 18:{name: "文登", value: Array(3)}
    20. 19:{name: "上海", value: Array(3)}

数据合并处理concat的更多相关文章

  1. teradata 字符串数据合并 在concat()函数无法使用的情况下

    在teradata sql中不存在concat()函数或者stuff()函数,在此情况下,如何实现多条字符串数据合并成一行? 在查找不同方法过程中,在stackflow中找到最简便的方法,使用xml_ ...

  2. pandas中,dataframe 进行数据合并-pd.concat()

    ``# 通过数据框列向(左右)合并 a = pd.DataFrame(X_train) b = pd.DataFrame(y_train) # 合并数据框(合并前需要将数据设置成DataFrame格式 ...

  3. 9-Pandas之数据合并与轴向连接(pd.concat()的详解)

    数据合并:由于数据可能是不同的格式,且来自不同的数据源,为了方便之后的处理与加工,需要将不同的数据转换成一个DataFrame. Numpy中的concatenate().vstack().hstac ...

  4. 初识Javascript.03 -- switch、自增、while循环、for、break、continue、数组、遍历数组、合并数组concat

    除了注意大小写,别的木啥了 Switch语句 Switch(变量){ case 1: 如果变量和1的值相同,执行该处代码 break; case 2: 如果变量和2的值相同,执行该处代码 break; ...

  5. pandas学习(数据分组与分组运算、离散化处理、数据合并)

    pandas学习(数据分组与分组运算.离散化处理.数据合并) 目录 数据分组与分组运算 离散化处理 数据合并 数据分组与分组运算 GroupBy技术:实现数据的分组,和分组运算,作用类似于数据透视表 ...

  6. python 数据合并

    1. 数据合并 前言 一.横向合并 1. 基本合并语句 2. 键值名不一样的合并 3. “两个数据列名字重复了”的合并 二.纵向堆叠 统计师的Python日记[第6天:数据合并] 前言 根据我的Pyt ...

  7. 使用Notepad++将多行数据合并成一行

    1.按Ctrl+F,弹出“替换”的窗口: 2.选择“替换”菜单: 3.“查找目标”内容输入为:\r\n: 4.“替换为”内容为空: 5.“查找模式”选择为正则表达式: 6.设置好之后,点击“全部替换” ...

  8. R语言数据合并使用merge数据追加使用rbind和cbind

    R语言中的横向数据合并merge及纵向数据合并rbind的使用 我们经常会遇到两个数据框拥有相同的时间或观测值,但这些列却不尽相同.处理的办法就是使用merge(x, y ,by.x = ,by.y ...

  9. python 数据清洗之数据合并、转换、过滤、排序

    前面我们用pandas做了一些基本的操作,接下来进一步了解数据的操作, 数据清洗一直是数据分析中极为重要的一个环节. 数据合并 在pandas中可以通过merge对数据进行合并操作. import n ...

随机推荐

  1. 【转载】Centos系统采用NVM安装Node.js环境

    Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行环境,用来方便地搭建快速的易于扩展的网络应用.Node.js 使用了一个事件驱动.非阻塞式 I/O 的模型,使其轻量又 ...

  2. SQL 常用的判断、连表、跨库、去重、分组、ROW_NUMBER()分析函数SQL用法

    常用的SQL 由浅入深 大致上回想一下自己常用的SQL,并做个记录,目标是实现可以通过在此页面查找到自己需要的SQL ,陆续补充    有不足之处,请提醒改正 首先我创建了两个库,每个库两张表.(工作 ...

  3. 转:VB中的API详解

    在接下来的这篇文章中,我将向大家介绍.NET中的线程API,怎么样用C#创建线程,启动和停止线程,设置优先级和状态. 在.NET中编写的程序将被自动的分配一个线程.让我们来看看用C#编程语言创建线程并 ...

  4. javaScript遍历对象、数组总结(转载)

    javaScript遍历对象.数组总结  转载来源 https://www.cnblogs.com/chenyablog/p/6477866.html 在日常工作过程中,我们对于javaScript遍 ...

  5. Java静态数据的初始化

    Java中无论创建多少对象,静态数据都只占一份存储区域. 下面程序示例静态存储区域的初始化: //: initialization/StaticInitialization.java // Speci ...

  6. Android Studio 学习(三) 广播

    动态注册监听网络变化 创建intentFilter 并addAction 代表了监听哪个广播 然后使用registerReceiver()方法 将intentFilter 与 自己创建的监听器 传进去 ...

  7. mysql无法远程连接

    在mysql的mysql数据库下: select user,host from user;(查看,没有本机的访问权限) grant all privileges on *.* to root@&quo ...

  8. js 人民币小写金额转换为大写

    function smalltoBIG(n) { var fraction = ['角', '分']; var digit = ['零', '壹', '贰', '叁', '肆', '伍', '陆', ...

  9. HTML元素被定义为块级元素或内联元素。那么什么是块级元素,什么是内联元素呢

    块级元素(block)特性: 块级元素在浏览器显示时,通常会以新行来开始(和结束). 宽度(width).高度(height).内边距(padding)和外边距(margin)都可控制;就像以前用到的 ...

  10. LNMP的配置与优化

    一.LNMP的下载 LNMP一键安装包是一个用Linux Shell编写的可以为CentOS/RadHat/Fedora.Debian/Ubuntu/Raspbian/Deepin VPS或独立主机安 ...