template <class T,class E>
void Bellman-Ford(Graph<T,E>&G, int v, E dist[], int path[]){
int i,k,u,n=G.NumberOfVerticles();
E w;
for(i=; i<n; i++){
dist[i]=G.getWeight(v,i);
if(i!=v && dist[i]<maxValue) path[i]=v;
else path[i]=-;
}
for(k=; k<n; k++)
for(u=; u<n; u++)
if(u!=v)
for(i=; i<n; i++){
if(w> && w<maxValue && dist[u]>dist[i]+w){
dist[u]=dist[i]+w;
path[u]=i;
}
}
}

算法-图(2)Bellman-Ford算法求最短路径的更多相关文章

  1. 算法-图(1)Dijkstra求最短路径

    数组dist[],是当前求到的顶点v到顶点j的最短路径长度 数组path[]存放求到的最短路径,如path[4]=2,path[2]=3,path[3]=0,则路径{0,3,2,4}就是0到4的最短路 ...

  2. Bellman - Ford 算法解决最短路径问题

    Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...

  3. Bellman—Ford算法思想

    ---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...

  4. Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】

    题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...

  5. 图的最小生成树——Kruskal算法

    Kruskal算法 图的最小生成树的算法之一,运用并查集思想来求出最小生成树. 基本思路就是把所有边从小到大排序,依次遍历这些边.如果这条边所连接的两个点在一个连通块里,遍历下一条边,如果不在,就把这 ...

  6. poj1860 bellman—ford队列优化 Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 799 ...

  7. uva 558 - Wormholes(Bellman Ford判断负环)

    题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...

  8. 求最短路径的三种算法: Ford, Dijkstra和Floyd

    Bellman-Ford算法 Bellman-Ford是一种容易理解的单源最短路径算法, Bellman-Ford算法需要两个数组进行辅助: dis[i]: 存储顶点i到源点已知最短路径 path[i ...

  9. C++迪杰斯特拉算法求最短路径

    一:算法历史 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以 ...

  10. 《算法导论》读书笔记之图论算法—Dijkstra 算法求最短路径

    自从打ACM以来也算是用Dijkstra算法来求最短路径了好久,现在就写一篇博客来介绍一下这个算法吧 :) Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的 ...

随机推荐

  1. 集合和Iterator迭代器

    集合 集合是java中提供的一种容器,可以用来存储多个数据. 注意: ①.集合只能存放对象.比如你存一个 int 型数据 1放入集合中, 其实它是自动转换成 Integer 类后存入的,Java中每一 ...

  2. SQL数据库优化总结

    1.在表中建立索引优先考虑 where.group by使用到的数据. 2.查询的sql语句中不要使用select * ,因为会返回许多无用的字段降低查询的效率,应该使用具体的字段代替*,只返回使用到 ...

  3. LIMS产品 - Starlims解决方案

    pharmaceutical-biotech 制药和生物技术 general-manufacturing 制药业 contract-services 第三方 molecular-testing 分子测 ...

  4. PHP each() 函数

    实例 返回当前元素的键名和键值,并将内部指针向后移动: <?php $people = array("Peter", "Joe", "Glenn ...

  5. PHP str_getcsv() 函数

    定义和用法 str_getcsv() 函数解析 CSV 格式字段的字符串,并返回一个包含所读取字段的数组. 语法 str_getcsv(string,separator,enclosure,escap ...

  6. day20:正则表达式

    单个字符的匹配 findall(正则表达式,字符串) 把符合正则表达式的字符串存在列表中返回 预定义字符集(8) \d 匹配数字 \D 匹配非数字 \w 匹配数字字母下划线 \W 匹配非数字或字母或下 ...

  7. luogu 1587 [NOI2016]循环之美

    LINK:NOI2016循环之美 这道题是 给出n m k 求出\(1\leq i\leq n,1\leq j\leq m\) \(\frac{i}{j}\)在k进制下是一个纯循环的. 由于数值相同的 ...

  8. 企业签名和TF签名哪个好?TF签名和企业签名怎么选?

    很多开发者在App无法上架Appstore,需要内测或者开放给苹果用户使用的时候,需要选择企业签名来帮助自己的App开放下载链接,给苹果用户使用.苹果企业签名的类型有很多,TF签名最近又很火爆,那么企 ...

  9. 内网 Maven 编译

    内网 Maven 编译 有个特殊的需求,在不联网的情况下编译 Java 项目. 想到两种方案: 搭建 Nexus 私有镜像仓库. 直接把依赖 jar包 放在编译机的 maven 本地库中. 步骤简述 ...

  10. EasyExcel的基本使用方法

    在Java语言领域,说到Excel处理工具,大家首先想到的可能是阿帕奇的poi,poi在处理数据量不大的excel文件上确实非常强大,但是随着后来excel从03(一个excel文件中最多有65536 ...