bzoj3622已经没有什么好害怕的了

题意:

给n个数Ai,n个数Bi,将Ai中的数与Bi中的数配对,求配对Ai比Bi大的比Bi比Ai大的恰好有k组的方案数。n,k≤2000

题解:

蒟蒻太弱了只能引用神犇题解

我们将两个读入的数组排序,令 next[i] 表示最大的 j 满足 A[i]>B[j],令f[i][j]表示枚举到第i个A时,有j组A>B,但剩下的情况是不考虑的,则f[i][j]=f[i-1][j]+f[i-1][j-1]*(next[i]-j+1)。但若把 f[n][s] 直接输出会WA因为会有这种情况出现:

a1,a2,a3

b1,b2,b3

a1>b1  a2>b2  a3>b3

那么((a1,b1),(a2,b2),a3不明)和((a1,b1),(a3,b3),a2不明)就会被视为两种答案,可见我们要求出的是 f’[n][s] 表示n个A,有s组A>B,剩下的都是B>A

这里就要用容斥了

f'[n][i]=f[n][i]*(n-i)!-sigma(j,i+1,n)f'[n][j]*C[j][i]

(n-i)!是枚举后面 n-i 可能的方案,f‘[n][j]*C(j, i) 表示 f[n][i] 中实际有 j 组B>A却被计入f[n][i]的数量

f'[n][s]就是答案了,总时间复杂度为 O(n2)

C(j,i)要递推,不然要溢出。

代码:

 #include <cstdio>
#include <cstring>
#include <algorithm>
#define inc(i,j,k) for(int i=j;i<=k;i++)
#define dec(i,j,k) for(int i=j;i>=k;i--)
#define maxn 2100
#define mod 1000000009
#define ll long long
using namespace std; int s[maxn],p[maxn],next[maxn],n,k; ll f1[maxn][maxn],f2[maxn],C[maxn][maxn],P[maxn];
inline int read(){
char ch=getchar(); int f=,x=;
while(ch<''||ch>''){if(ch=='-')f=-; ch=getchar();} while(ch>=''&&ch<='')x=x*+ch-'',ch=getchar();
return f*x;
}
int main(){
n=read(); k=read(); if((n-k)&){printf(""); return ;} k=((n-k)>>)+k;
inc(i,,n)s[i]=read(); inc(i,,n)p[i]=read(); sort(s+,s+n+); sort(p+,p+n+);
int l=; inc(i,,n){while(p[l]<s[i]&&l<=n)l++; next[i]=l-;}
f1[][]=; inc(i,,n){f1[i][]=; inc(j,,n)f1[i][j]=(f1[i-][j]+f1[i-][j-]*(ll)max(next[i]-j+,)%mod)%mod;}
P[]=; inc(i,,n)P[i]=P[i-]*(ll)i%mod;
inc(i,,n){C[i][]=; inc(j,,i)C[i][j]=(C[i-][j]+C[i-][j-])%mod;}
dec(i,n,k){
f2[i]=; inc(j,i+,n)f2[i]=(f2[i]+f2[j]*C[j][i]%mod)%mod;
f2[i]=f1[n][i]*P[n-i]%mod-f2[i]; if(f2[i]<)f2[i]+=mod;
}
printf("%lld",f2[k]); return ;
}

20160610

bzoj3622已经没有什么好害怕的了的更多相关文章

  1. [bzoj3622]已经没有什么好害怕的了_动态规划_容斥原理

    bzoj-3622 已经没有什么好害怕的了 题目大意: 数据范围:$1\le n \le 2000$ , $0\le k\le n$. 想法: 首先,不难求出药片比糖果小的组数. 紧接着,我开始的想法 ...

  2. [BZOJ3622]已经没有什么好害怕的了(容斥DP)

    给定两个数组a[n]与b[n](数全不相等),两两配对,求“a比b大”的数对比“b比a大”的数对个数多k的配对方案数. 据说做了这题就没什么题好害怕的了,但感觉实际上这是一个套路题,只是很难想到. 首 ...

  3. BZOJ3622 已经没有什么好害怕的了 【dp + 二项式反演】

    题目链接 BZOJ3622 题解 既已开题 那就已经没有什么好害怕的了 由题目中奇怪的条件我们可以特判掉\(n - k\)为奇数时答案为\(0\) 否则我们要求的就是糖果大于药片恰好有\(\frac{ ...

  4. bzoj3622已经没有什么好害怕的了 dp+组合+容斥(?)

    3622: 已经没有什么好害怕的了 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1033  Solved: 480[Submit][Status][ ...

  5. BZOJ3622 已经没有什么好害怕的了 动态规划 容斥原理 组合数学

    原文链接https://www.cnblogs.com/zhouzhendong/p/9276479.html 题目传送门 - BZOJ3622 题意 给定两个序列 $a,b$ ,各包含 $n$ 个数 ...

  6. BZOJ3622 已经没有什么好害怕的了(动态规划+容斥原理)

    显然可以转化为一个阶梯状01矩阵每行每列取一个使权值和为k的方案数.直接做不可做,考虑设f[i][j]为前i行权值和至少为j,即在其中固定了j行选1的方案数.设第i行从1~a[i]列都是1且a[i]+ ...

  7. BZOJ3622 已经没有什么好害怕的了

    Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output 4 HINT 输入的2*n个数字保证全不相 ...

  8. 【BZOJ3622】已经没什么好害怕的了 容斥原理+dp

    Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output 4 HINT 输入的2*n个数字保证全不相 ...

  9. 洛谷 P4859 && BZOJ3622: 已经没有什么好害怕的了

    题目描述 给出 \(n\) 个数 \(a_i\)​ ,以及 \(n\) 个数 \(b_i\)​ ,要求两两配对使得 \(a>b\) 的对数减去 \(a<b\) 的对数等于 \(k\) . ...

随机推荐

  1. 使用 LIKE 的模糊查询

    字符串匹配的语法格式如下: <表达式1> [NOT] LIKE <表达式2> 字符串匹配是一种模式匹配,使用运算符 LIKE 设置过滤条件,过滤条件使用通配符进行匹配运算,而不 ...

  2. Elasticsearch原理入门

    这是一篇拼接贴,我是缝合怪 项目中用到了es,使用方法是挺简单的,封装了基本api以后,把查询条件封装一下传给client执行就可,但是光使用比较肤浅,研究一下原理和本质,更利于以后开发使用 扫盲贴 ...

  3. [Cadence] 10个Cadence AD PADS经典案例 2-12层板设计

    [Cadence] 10个Cadence Allegro经典案例 2-12层板设计 自己保存的PCB例程资料分享 Allegro AD PADS看下面截图需要的拿去 下载链接 链接: https:// ...

  4. IP组网实验(使用Cisco Packet Tracer路由器模拟软件)

    最近计网课讲到了以太网,第二个计网实验就是IP组网实验.这个实验主要使用了netsim这个路由器模拟软件.怎奈mac上没有,于是用Cisco Packet Tracer进行了一次模拟(其实就是实验中的 ...

  5. javaScript深入浅出之理解闭包

    javaScript深入浅出之理解闭包 引言 闭包是个老生长谈的话题了,对于闭包网上也有很多不同的看法 <你不知道的javaScript>对于闭包是这么定义的:函数创建和函数执行不在同一个 ...

  6. 状压DP 从TSP问题开始入门哦

      一开始学状压DP难以理解,后来从TSP开始,终于入门了nice!!!! 旅行商问题 :    给定n个城市和两两相互的距离 ,求一条路径经过所有城市,并且路径达到最下仅限于; 朴树想法: 做n个城 ...

  7. redis高级命令3哨兵模式

    redis的哨兵模式 现在我们在从服务器1.222上让该从服务器作为哨兵 首先将redis安装包文件下的sentinel.conf文件复制到/usr/local/redis/etc目录下 然后修改se ...

  8. MongoDB via Dotnet Core数据映射详解

    用好数据映射,MongoDB via Dotnet Core开发变会成一件超级快乐的事.   一.前言 MongoDB这几年已经成为NoSQL的头部数据库. 由于MongoDB free schema ...

  9. SpringBoot项目jar包启动脚本

    startup.bat @echo off set path=X:\xxxxxxx\Java\JDK\jre\bin START "项目名" "%path%\java&q ...

  10. 关于SPSS Modeler18 提示:用于定义的观测值的字段的值无效

    今天在做实验的时候,按照实验步骤严格设置了参数,当运行节点的时候,一直提示:用于定义的观测值的字段的值无效,如下图 我把我的流文件发给同学,同学的机器上是可以运行的,但是我的不行,不知道什么原因,有知 ...