opencv毛孔识别(python实现)
毛孔识别
本文仅仅描述如何用opencv完成一个入门级别的毛孔识别,基于python3.7和 opencv 4.3
原图以及识别生成的效果图
一、首先引入需要的包,然后读取需要识别的图片
import cv2
import numpy as np
imageMat = cv2.imread("b.png")
二、选取B通道和均值滤波
选取通道是为了将图片转换为灰度图,以便后续的阀值处理,具体选取BGR哪个根据图片不同而不同;之后均值滤波以降噪,要在失真和去噪效果之间取得平衡,选取合适大小的卷积核
#选取blue通道
blueChannelMat = imageMat[:,:,0]
#均值滤波(滤波窗口越大图像失真越严重即更模糊)
blurMat = cv2.blur(blueChannelMat,(5,5))#5,5表示卷积核大小是5x5
三、阀值分割
阀值分割是将灰度图转换为二值图,这也是关乎识别质量很重要的一步,关键在于阀值大小的选取;图中大于阀值的像素会被设置为最大值(一般为255),小于或等于阀值的像素灰度值会被设置为0
otsu法是一种自动计算阀值的算法,通过如下代码可以获取阀值t和二值图
#动态阀值分割(otsu法)
t,thresMat = cv2.threshold(blurMat,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
但有时otsu的效果并不好,就比如现在这样,阀值明显是偏大了
这时就需要手动设置一个合适的阀值(根据阀值处理的效果不断调整到合适为止),并且将参数从THRESH_BINARY修改为THRESH_BINARY_INV即反向阀值处理,因为我们识别的对象是黑色的毛孔,像素值趋向0,阀值处理后像素会被设置为0,而反向阀值则把毛孔的像素设置为255,为什么这么做后面会说明
t,thresMat = cv2.threshold(blurMat,70,255,cv2.THRESH_BINARY_INV)
看到这里你应该能理解识别是怎么做到的了,其实就是因为黑色的毛孔像素值低,可以通过阀值分割出来,完成了对毛孔和皮肤的区分,图里的白色部分就是分割出的毛孔
四、腐蚀膨胀
腐蚀和膨胀简单是去除那些单独小的噪点和让毛孔边缘更平滑,这里不展开说明;根据图片和毛孔的大小调整卷积核的大小,毛孔小卷积核也要取小点,一般取3x3,5x5,7x7......
下面腐蚀膨胀的处理参考了论文: 《基于计算机视觉的皮肤毛孔识别及精准定位》 - 苏晓朋
#核为矩形5x5腐蚀
k1 = cv2.getStructuringElement(cv2.MORPH_RECT,(5,5))#生成形状为矩形5x5的卷积核
x0 = cv2.erode(thresMat, k1)
#核为圆形9x9开运算
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(9,9))
x1 = cv2.morphologyEx(thresMat,cv2.MORPH_OPEN,kernel)
#9x9椭圆核开闭运算
x1 = cv2.morphologyEx(x1,cv2.MORPH_OPEN,kernel)
x2 = cv2.morphologyEx(x1,cv2.MORPH_CLOSE,kernel)
腐蚀膨胀处理后的效果
五、标识毛孔
这里采用opencv的查找轮廓函数来查找连通区域(即图中的白色区域),然后通过计算每个轮廓的面积来大致计算毛孔面积。前面提到阀值分割时要使用反向阀值分割,是因为opencv查找轮廓是以白色区域为对象,就是只会查找白色区域的轮廓
#计算连通区域面积
#查找图像轮廓,参数分别表示只检测外轮廓,存储所有轮廓点
contours,hierarchy=cv2.findContours(x2,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)
#计算轮廓面积
contoursArea=[]#存储面积的列表
contours_sel=[]#存储符合要求的轮廓
for i in range(len(contours)):
temp = cv2.contourArea(contours[i])
if temp>30:#筛选出面积大于30的轮廓
contoursArea.append(temp)
contours_sel.append(contours[i])
#绘制轮廓,第一个参数是你要绘制轮廓的图,第二个参数是使用的轮廓,
#第一个-1表示绘制所有轮廓,(0,255,0)是绘制使用的颜色,第二个-1表示填充轮廓内部
x2 = cv2.drawContours(imageMat,contours_sel,-1,(0,255,0),-1)
cv2.imshow("b",x2)#显示图像
cv2.waitKey()
cv2.destroyAllWindows()
下图是识别出的轮廓叠加在原图上的结果
六、如何生成mask图
一般我们用于训练神经网络使用的label图是mask图,当然这里的label图还要人工修正,这里只说说如何从查找到的轮廓生成mask图
#先生成一张纯白的图
mask = np.zeros(imageMat.shape,np.uint8)#生成和原图大小一致的黑色图片
t,mask = cv2.threshold(mask,0,255,cv2.THRESH_BINARY_INV)#通过阀值将其反色为白图
#在白图上绘制查找到的轮廓即可
mask = cv2.drawContours(mask,contours_sel,-1,(0,0,0),-1)
cv2.imshow('m',mask)
第一次写博客,经验不足请多多包涵,之后应该会更新如何使用Unet神经网络来分割出毛孔的文章
参考文献
[1] 林绵. 面部皮肤评测系统的设计与实现[D].华南理工大学,2016.
[2] 李立综. OpenCV轻松入门:面向Python[M].电子工业出版社,2019-05-01
[3] 苏晓朋. 基于计算机视觉的皮肤毛孔识别及精准定位[D].华北电力大学(北京),2018.
本文为博主原创文章,未经博主允许禁止转载
声明:本文同步发布于CSDN:https://blog.csdn.net/Misaki____Mei/article/details/107272751
opencv毛孔识别(python实现)的更多相关文章
- 人脸检测及识别python实现系列(6)——终篇:从实时视频流识别出“我”
人脸检测及识别python实现系列(6)——终篇:从实时视频流识别出“我” 终于到了最后一步,激动时刻就要来临了,先平复一下心情,把剩下的代码加上,首先是为Model类增加一个预测函数: #识别人脸 ...
- 人脸检测及识别python实现系列(3)——为模型训练准备人脸数据
人脸检测及识别python实现系列(3)——为模型训练准备人脸数据 机器学习最本质的地方就是基于海量数据统计的学习,说白了,机器学习其实就是在模拟人类儿童的学习行为.举一个简单的例子,成年人并没有主动 ...
- 人脸检测及识别python实现系列(1)——配置、获取实时视频流
人脸检测及识别python实现系列(1)——配置.获取实时视频流 1. 前言 今天用多半天的时间把QQ空间里的几篇年前的旧文搬到了这里,算是完成了博客搬家.QQ空间里还剩下一些记录自己数学学习路线的学 ...
- OpenCV.物体识别
1.度娘:“OpenCV 物体识别” 1.1.opencv实时识别指定物体 - 诺花雨的博客 - CSDN博客.html(https://blog.csdn.net/qq_27063119/artic ...
- opencv +数字识别
现在很多场景需要使用的数字识别,比如银行卡识别,以及车牌识别等,在AI领域有很多图像识别算法,大多是居于opencv 或者谷歌开源的tesseract 识别. 由于公司业务需要,需要开发一个客户端程序 ...
- opencv人脸识别代码
opencv人脸识别C++代码 /* * Copyright (c) 2011,2012. Philipp Wagner <bytefish[at]gmx[dot]de>. * Relea ...
- 人脸检测及识别python实现系列(2)——识别出人脸
人脸检测及识别python实现系列(2)——识别出人脸 http://www.cnblogs.com/neo-T/p/6430583.html
- OpenCV人脸识别的原理 .
OpenCV人脸识别的原理 . 在之前讲到的人脸测试后,提取出人脸来,并且保存下来,以供训练或识别是用,提取人脸的代码如下: void GetImageRect(IplImage* orgImage, ...
- 人脸检测及识别python实现系列(5)——利用keras库训练人脸识别模型
人脸检测及识别python实现系列(5)——利用keras库训练人脸识别模型 经过前面稍显罗嗦的准备工作,现在,我们终于可以尝试训练我们自己的卷积神经网络模型了.CNN擅长图像处理,keras库的te ...
随机推荐
- json 拼装空list、object
import com.alibaba.fastjson.JSONArray; import com.alibaba.fastjson.JSONObject; public class FastJson ...
- 写给大忙人的Redis主从复制,花费五分钟让你面试不尴尬
相信很多小伙伴都已经配置过主从复制,但是对于redis主从复制的工作流程和常见问题很多都没有深入的了解.咔咔这次用时俩天时间给大家整理一份redis主从复制的全部知识点. 本文实现所需环境 cento ...
- C# 泛型的基本知识,以及什么是泛型?
1.1 泛型概述 1.1.1 泛型广泛用于容器(collections) 1.1.2 命名空间System.Collections.Generic 1.2 泛型的优点. 以前类型的泛化(general ...
- 基于node的前端项目编译时内存溢出问题
解决方法: CALL_AND_RETRY_LAST Allocation failed - JavaScript heap out of memory JavaScript堆内存不足,这里说的 Jav ...
- FastJson对实体类和Json还有JSONObject相互转换
1. 实体类或集合转JSON串 String besnString = JSONObject.toJSONString(实体类); 2.JSON串转JSONObject JSONObject json ...
- Newtonsoft 六个超简单又实用的特性,值得一试 【下篇】
一:讲故事 上一篇介绍的 6 个特性从园子里的反馈来看效果不错,那这一篇就再带来 6 个特性同大家一起欣赏. 二:特性分析 1. 像弱类型语言一样解析 json 大家都知道弱类型的语言有很多,如: n ...
- Docker(一)Docker概述
Docker概述 概述 Docker是供开发人员和系统管理员 使用容器构建,运行和共享应用程序的平台.使用容器来部署应用程序称为容器化.容器不是新的,但用于轻松部署应用程序的容器却是新的. 容器化越来 ...
- 并发07--线程池及Executor框架
一.JAVA中的线程池 线程池的实现原理及流程如下图所示: 如上图所示,当一个线程提交到线程池时(execute()或submit()),先判断核心线程数(corePoolSize)是否已满,如果未满 ...
- IDEA开发工具使用 git 创建项目、拉取分支、合并分支
转载自:https://blog.csdn.net/qq_39470733/article/details/80366435 工作中多人使用版本控制软件协作开发,常见的应用场景归纳如下: 假设小组中有 ...
- MongoDB快速入门教程 (2)
2.MongoDB的基本的CRUD操作 2.1.创建文档 在具体操作之前,想要知道有多少数据库,可以执行下面命令 show dbs 在mongodb中,数据库中包含的叫做集合(表),集合中存储的内容叫 ...