空间金字塔池化 ssp-net
《Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition》,这篇paper提出了空间金字塔池化。
之前学习的RCNN,虽然使用了建议候选区域使得速度大大降低,但是对于超大容量的数据,计算速度还有待提高。对RCNN来说,计算冗余很大一部分来自于:对每一个proposal region提取一次特征,而不同region之间有很多的交集,这就导致很大的计算冗余。因此fast-rcnn提出了,先对图片进行一次总体的特征提取,然后再提取每个proposal region的特征。
说跑题了,回归正题。先说说ssp-net的优点,在ssp-net之前,使用卷积神经网络需要统一图片的输入大小,那我们自己思考一下为什么需要固定输入大小呢?
cnn包括三个部分:卷积池化和全连接。那到底哪一个部分需要固定输入呢?
先说卷积,卷积操作对图片的输入大小要求吗?貌似固定卷积核大小,给定输入图片,卷积核都能进行计算,然后输入特征值,任意大小的图片都可以进行卷积。
再说池化,池化是更加不需要要求输入大小的,池化只需要根据池化大小,进行平均或者最大池化就可以了。
那最后就是全连接喽,分析一下为什么全连接需要固定输入大小。又要拿出之前随笔中的那张图了:
看看全连接是怎么进行计算的,x是输入,根据矩阵运算的规则,不同的输入x对应这不同的w,因此要进行全连接,首先要固定下来输入x。因此罪魁祸首找到了,传统cnn之所以要固定输入,是因为全连接层的存在。原博客地址:http://www.cnblogs.com/smartwhite/p/8601477.html。因此空间金字塔池化层要做的就是卷积层到全连接层的过度,把卷积层不固定的输出,通过空间金字塔池化层,固定下来,作为全连接层的输入。
算法过程:
输入层:一张任意大小的图片
输出层:21维向量
如上图所示,当我们输入一张图片的时候,我们利用不同大小的刻度,对一张图片进行了划分。上面示意图中,利用了三种不同大小的刻度,对一张输入的图片进行了划分,最后总共可以得到16+4+1=21个块,我们即将从这21个块中,每个块提取出一个特征,这样刚好就是我们要提取的21维特征向量。
第一张图片,我们把一张完整的图片,分成了16个块,也就是每个块的大小就是(w/4,h/4);
第二张图片,划分了4个块,每个块的大小就是(w/2,h/2);
第三张图片,把一整张图片作为了一个块,也就是块的大小为(w,h)
空间金字塔最大池化的过程,其实就是从这21个图片块中,分别计算每个块的最大值,从而得到一个输出神经元。最后把一张任意大小的图片转换成了一个固定大小的21维特征(当然你可以设计其它维数的输出,增加金字塔的层数,或者改变划分网格的大小)。上面的三种不同刻度的划分,每一种刻度我们称之为:金字塔的一层,每一个图片块大小我们称之为:windows size了。如果你希望,金字塔的某一层输出n*n个特征,那么你就要用windows size大小为:(w/n,h/n)进行池化了。
当我们有很多层网络的时候,当网络输入的是一张任意大小的图片,这个时候我们可以一直进行卷积、池化,直到网络的倒数几层的时候,也就是我们即将与全连接层连接的时候,就要使用金字塔池化,使得任意大小的特征图都能够转换成固定大小的特征向量,这就是空间金字塔池化的奥义(多尺度特征提取出固定大小的特征向量)。具体的流程图如下:
此处直接复制粘贴原作者,因为是在讲得太清晰了,算法概述的原博客地址:https://blog.csdn.net/hjimce/article/details/50187655
空间金字塔池化 ssp-net的更多相关文章
- Spatial pyramid pooling (SPP)-net (空间金字塔池化)笔记(转)
在学习r-cnn系列时,一直看到SPP-net的身影,许多有疑问的地方在这篇论文里找到了答案. 论文:Spatial Pyramid Pooling in Deep Convolutional Net ...
- 空间金字塔池化(Spatial Pyramid Pooling, SPP)原理和代码实现(Pytorch)
想直接看公式的可跳至第三节 3.公式修正 一.为什么需要SPP 首先需要知道为什么会需要SPP. 我们都知道卷积神经网络(CNN)由卷积层和全连接层组成,其中卷积层对于输入数据的大小并没有要求,唯一对 ...
- SPP空间金字塔池化技术的直观理解
空间金字塔池化技术, 厉害之处,在于使得我们构建的网络,可以输入任意大小的图片,不需要经过裁剪缩放等操作. 是后续许多金字塔技术(psp,aspp等)的起源,主要的目的都是为了获取场景语境信息,获取上 ...
- 空间金字塔池化(Spatial Pyramid Pooling,SPP)
基于空间金字塔池化的卷积神经网络物体检测 原文地址:http://blog.csdn.net/hjimce/article/details/50187655 作者:hjimce 一.相关理论 本篇博文 ...
- SPPNet论文翻译-空间金字塔池化Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
http://www.dengfanxin.cn/?p=403 原文地址 我对物体检测的一篇重要著作SPPNet的论文的主要部分进行了翻译工作.SPPNet的初衷非常明晰,就是希望网络对输入的尺寸更加 ...
- 【神经网络与深度学习】【计算机视觉】SPPNet-引入空间金字塔池化改进RCNN
转自: https://zhuanlan.zhihu.com/p/24774302?refer=xiaoleimlnote 继续总结一下RCNN系列.上篇RCNN- 将CNN引入目标检测的开山之作 介 ...
- SPPNet(特征金字塔池化)学习笔记
SPPNet paper:Spatial pyramid pooling in deep convolutional networks for visual recognition code 首先介绍 ...
- 神经网络中的池化层(pooling)
在卷积神经网络中,我们经常会碰到池化操作,而池化层往往在卷积层后面,通过池化来降低卷积层输出的特征向量,同时改善结果(不易出现过拟合).为什么可以通过降低维度呢? 因为图像具有一种“静态性”的属性,这 ...
- CVPR 2019|PoolNet:基于池化技术的显著性检测 论文解读
作者 | 文永亮 研究方向 | 目标检测.GAN 研究动机 这是一篇发表于CVPR2019的关于显著性目标检测的paper,在U型结构的特征网络中,高层富含语义特征捕获的位置信息在自底向上的传播过 ...
随机推荐
- ios swift 知识点记录
1. 定义变量 var name = "***" 定义常量 let name ="*****" 2. swift 变量类型 String, Int, Fl ...
- linear-gradient,radial-gradient 渐变
一.渐变效果 -> 线性渐变 方法: background-image: linear-gradient(direction, color-stop1, color-stop2, ...); ...
- 无法解析的外部符号 "public: virtual struct CRuntimeClass * _
SetupPropertyPage.obj : error LNK2001: 无法解析的外部符号 "public: virtual struct CRuntimeClass * __this ...
- 大文件上传、断点续传、秒传、beego、vue
大文件上传 0.项目源码地址 源码地址 :https://github.com/zhuchangwu/large-file-upload 它是个demo,仅供参考 前端基于 vue-simple-up ...
- maven依赖冲突以及解决方法
什么是依赖冲突 依赖冲突是指项目依赖的某一个jar包,有多个不同的版本,因而造成类包版本冲突 依赖冲突的原因 依赖冲突很经常是类包之间的间接依赖引起的.每个显式声明的类包都会依赖于一些其它的隐式类包, ...
- twaver html5 如何设置节点不可拖动
解决思路: 1.创建一个不可移动的图层 : layer 2.设置不可拖动的节点node 的图层为 layer 见代码: var box = new twaver.ElementBox(); var ...
- jvm入门及理解(六)——垃圾回收与算法
一.jvm垃圾回收要做的事情 哪些内存需要回收 什么时候回收 怎么回收 二.如何判断对象已经死亡,或者说确定为垃圾 引用计数法: 给对象中添加一个引用计数器,每当有一个地方引用它时,计数器的值就加1: ...
- JDK8--07:并行流与串行流
JDK8中,提供了并行流和串行流,使用parallel()和sequential()来处理,parallel()为并行流sequential()为串行流,两者可以相互转换,以最后一个为准 LongSt ...
- Python实用笔记 (26)面向对象高级编程——定制类
Python的class允许定义许多定制方法,可以让我们非常方便地生成特定的类.以下是集中常见的定制方法: 怎么才能打印得好看呢?只需要定义好__str__()方法,返回一个好看的字符串就可以了: _ ...
- 如何获取自定义meta标签信息?
<meta name="apple-itunes-app" content="app-id=432274380" /> 类似于这种meta信息,js ...