P6772 [NOI2020]美食家
题目大意
给你一个 \(n\) 个点,\(m\) 条边的有向图,每条边有一个权值 \(w_i\) ,每个节点有一个权值 \(a_i\) 。
你从节点 \(1\) 出发,每经过一个节点就可以获得该点的权值 \(a_i\) (起始点也可以获得,每个节点可以重复获得),问你经过的边权和恰好为 \(T\) 时,能获得的最大(点)权值和。
同时,题目还给出 \(k\) 个特殊条件,如果你在到达第 \(x_i\) 个节点时经过的边权和恰好为 \(t_i\) ,那么你就可以额外获得 \(y_i\) 的权值。

题解
我们可以观察题目数据范围:
对于所有测试点:
\(1≤n≤50\),\(n \leq m \leq 501\),\(0 \leq k \leq 200\),\(1 \leq t_i \leq T \leq 10^9\)。
\(1\leq wi \leq 5\),\(1 \leq c_i \leq 52501\),\(1 \leq u_i, v_i, x_i \leq n\),\(1 \leq y_i \leq 10^9\)。
发现每条边的边权不超过 \(5\) ,又考虑到我们需要恰好经过的边权为 \(T\) ,所以我们可以通过将边拆成点,同时建一个 \(floyd\) 矩阵,我们就可以利用矩阵快速幂来解决这个问题了。
但是我们发现还有一些特殊情况需要处理,我们可以考虑分段,每一段中间用矩阵快速幂,每一个相应的特殊情况给对应的位置添加值。
这样的复杂度是 $ O(125n^3k~logT)$ ,肯定是不行的,所以我们考虑优化。
由于我们每一次乘上的矩阵都是一样的,所以我们考虑预处理 \(2^k\) 的矩阵幂,然后每一个段都用类似于倍增的方式去处理。
这样的复杂度是 \(O(25~n^2~k~logT+125~n^3~logT)\) ,是可以接受的。
以上。
代码如下:
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N=55,M=505,K=205;
int n,m,t,k;
int u,v,w;
int a[N],ksm[35];
struct Matrix
{
int n,m;
int h[N*5][N*5];
Matrix() {n=m=0,memset(h,-1,sizeof(h));}
void print()
{
for(int i=1;i<=n;++i)
{
for(int j=1;j<=m;++j)
printf("%lld ",h[i][j]);
printf("\n");
}
printf("\n");
}
}res[35],sta;
Matrix operator*(const Matrix a,const Matrix b)
{
Matrix ans;
ans.n=a.n,ans.m=b.m;
for(int i=1;i<=ans.n;++i)
{
for(int j=1;j<=ans.m;++j)
{
for(int k=1;k<=a.m;++k)
{
if(a.h[i][k]>=0&&b.h[k][j]>=0)
ans.h[i][j]=max(ans.h[i][j],a.h[i][k]+b.h[k][j]);
}
}
}
return ans;
}
struct Festival {int t,x,y;}s[K];
bool cmp(Festival a,Festival b) {return a.t<b.t;};
signed main()
{
// freopen("delicacy.in","r",stdin);
// freopen("delicacy.out","w",stdout);
cin>>n>>m>>t>>k;
for(int i=1;i<=n;++i)
scanf("%lld",&a[i]);
res[0].n=res[0].m=n*5;
for(int i=1;i<=n*5;++i)
{
if(i/5==(i-1)/5)
res[0].h[i][i+1]=0;
}
for(int i=1;i<=m;++i)
scanf("%lld%lld%lld",&u,&v,&w),
res[0].h[(u-1)*5+w][(v-1)*5+1]=a[v];
for(int i=1;i<=32;++i)
res[i]=res[i-1]*res[i-1];
sta.n=1,sta.m=n*5;
sta.h[1][1]=a[1];
for(int i=1;i<=k;++i)
scanf("%lld%lld%lld",&s[i].t,&s[i].x,&s[i].y);
sort(s+1,s+1+k,cmp);
ksm[0]=1;
for(int i=1;i<=32;++i)
ksm[i]=(ksm[i-1]<<1);
int tmp=0;
for(int i=1;i<=k;++i)
{
for(int j=32;j>=0;--j)
{
if(tmp+ksm[j]<=s[i].t)
tmp+=ksm[j],sta=sta*res[j];
}
if(sta.h[1][(s[i].x-1)*5+1]>=0)
sta.h[1][(s[i].x-1)*5+1]+=s[i].y;
}
for(int i=32;i>=0;--i)
{
if(tmp+ksm[i]<=t)
tmp+=ksm[i],sta=sta*res[i];
}
printf("%lld\n",sta.h[1][1]);
return 0;
}
P6772 [NOI2020]美食家的更多相关文章
- 洛谷 P6772 - [NOI2020]美食家(广义矩阵快速幂)
题面传送门 题意: 有一张 \(n\) 个点 \(m\) 条边的有向图,第 \(0\) 天的时候你在 \(1\) 号城市,第 \(T\) 天的时候你要回到 \(1\) 号城市. 每条边上的边权表示从城 ...
- [XIN算法应用]NOI2020美食家
XIN(\(updated 2021.6.4\)) 对于很多很多的题目,发现自己并不会之后,往往会直接冲上一个XIN队算法,然而,这样 \(\huge{\text{鲁莽}}\) 的行为只能获得 TLE ...
- [NOI2020]美食家 题解
题意分析 给出一个带权有向图,要求从节点 $1$ 出发,经过恰好 $T$ 的边权和,回到节点 $1$ ,求可经过的最大点权和.特别地,经过的边权和达到部分特殊数时,会有某个点的点权发生改变. 思路分析 ...
- [NOI2020] 美食家
很好,自己会做NOI签到题了,去年只要会这题,再多打点暴力,\(Ag\)到手,希望今年\(NOI\)同步赛过\(Ag\)线吧,得有点拿得出手的成绩证明啊. 考虑\(T\)非常大,\(n\)又很小. 想 ...
- 【NOI2020】美食家(矩阵)
Description 给定一张有向图,\(n\) 个顶点,\(m\) 条边.第 \(i\) 条边从 \(u_i\) 到 \(v_i\),走完该边的用时为 \(w_i\).每一个点有一个价值 \(c\ ...
- XIN队算法
XIN队算法 注:名称由莫队算法改编而来 从luogu搬过来了... \(newly\;upd:2021.7.8\) \(newly\;upd:2021.6.6\) OI至高算法,只要XIN队算法打满 ...
- BZOJ 1691: [Usaco2007 Dec]挑剔的美食家 [treap 贪心]
1691: [Usaco2007 Dec]挑剔的美食家 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 786 Solved: 391[Submit][S ...
- [BZOJ1691][Usaco2007 Dec]挑剔的美食家
[BZOJ1691][Usaco2007 Dec]挑剔的美食家 试题描述 与很多奶牛一样,Farmer John那群养尊处优的奶牛们对食物越来越挑剔,随便拿堆草就能打发她们午饭的日子自然是一去不返了. ...
- BZOJ 1691: [Usaco2007 Dec]挑剔的美食家( 平衡树 )
按鲜嫩程度排个序, 从大到小处理, 用平衡树维护价值 ---------------------------------------------------------------------- #i ...
随机推荐
- css 实现换肤几种方式
说起换肤功能,前端肯定不陌生,其实就是颜色值的更换,实现方式有很多,也各有优缺点 一.可供选择的换肤 对于只提供几种主题方案,让用户来选择的,一般就简单粗暴的写多套主题 一个全局class控制样式切换 ...
- //*[starts-with(@class,'btn')][text()='差'] 正则定位元素
starts-with? //*[starts-with(@class,'btn')][text()='差'] 意思找从头开始的这个class
- IAR设置字体
1.IAR设置字体 第一种方法可以在IDE环境下,选择Tools -> option -> Editor - > Colors and Fonts,然后右边的Editor Font就 ...
- php include文件包含
XCTF题目:Web_php_include <?php show_source(__FILE__);//高亮显示源文件 echo $_GET['hello']; $page=$_GET['pa ...
- python-验证码图片识别
import tesserocr from PIL import Image #新建Image对象 image = Image.open('code.png') #调用tesserocr的image_ ...
- php读取Excel文件数据
首先先下载 PHPExcel 脚本之家下载地址:https://www.jb51.net/codes/194070.html 然后把文件丢到php脚本同级目录里面 在php文件里面写下以下代码即可 & ...
- BUUCTF 不一样的flag writeup
感谢BUUCTF提供的学习平台 https://buuoj.cn 题目:不一样的flag 工具:x64dbg 这是一道内存的迷宫题,迷宫是402000处的字符串 根据经验,这应该(a行*b列)的字符, ...
- FL Studio音乐编曲入门教程
有很多小伙伴给我们留言说使用FL Studio20一段时间后,虽然对这款音乐编曲软件的功能有了一个了解,但对它整个的编曲过程还不是太熟悉.所以今天我就给大家带来了FL Studio20这款音乐编曲软件 ...
- FL Studio中有关Sub Bass的一些制作与混音技巧
1.Sub Bass是什么? Sub Bass是一种低沉的低音,其频率大约低于60赫兹,并向下延伸,包括人类所能听到的最低频率,约为20赫兹.在这个范围内,人类的听觉不是很灵敏,所以在这个范围内的声音 ...
- Luogu P43916 图的遍历
我们把"u点能够到达的最大点"转化为反向图中能到达u点的所有点里的最大值,可知缩点后满足无后效性.val[i]的初值设为连通分量i中的最大点.反向存图,tarjan缩点,拓扑序dp ...