一、什么是RPC

RPC 的全称是 Remote Procedure Call ,是一种进程间通信方式。它允许程序调用另一个地址空间(通常是共享网络的另一台机器上)的过程或函数,而不用程序员显式编码这个远程调用的细节。即无论是调用本地接口/服务的还是远程的接口/服务,本质上编写的调用代码基本相同。

说起RPC,就不能不提到分布式,这个促使RPC诞生的领域。

假设你有一个计算器接口,Calculator模块,以及它的实现类CalculatorImpl,那么在系统还是单体应用时,你要调用Calculator的add方法来执行一个加运算,直接实例一个CalculatorImpl对象,然后调用add方法就行了,这其实就是非常普通的本地函数调用,因为在同一个地址空间,或者说在同一块内存,所以可以直接实现。

现在,基于高性能和高可靠等因素的考虑,你决定将系统改造为分布式应用,将很多可以共享的功能都单独拎出来,比如上面说到的计算器,你单独把它放到一个服务里头,让别的服务去调用它。

这下问题来了,服务A里头并没有CalculatorImpl这个类,那它要怎样调用服务B的CalculatorImpl的add方法呢?

有同学会说,可以模仿B/S架构的调用方式呀,在B服务暴露一个Restful接口,然后A服务通过调用这个Restful接口来间接调用CalculatorImpl的add方法。

很好,这已经很接近RPC了,不过如果是这样,那每次调用时,是不是都需要写一串发起http请求的代码呢?比如

res=requests.get("URL") 
 

但是,两个问题:
1、http协议较为复杂,效率低,相对笨重

2、调用方式不像本地调用简单方便,让调用者感知不到远程调用的逻辑。

二 如何实现RPC

2.1 RPC实现原理

实际情况下,RPC很少用到http协议来进行数据传输,毕竟我只是想传输一下数据而已,何必动用到一个文本传输的应用层协议呢,所以一般会选择直接传输二进制数据

不管你用何种协议进行数据传输,一个完整的RPC过程,都可以用下面这张图来描述:

 
 

以左边的Client端为例,Application就是rpc的调用方,Client Stub就是我们上面说到的代理对象,也就是那个看起来像是Calculator的实现类,其实内部是通过rpc方式来进行远程调用的代理对象,至于Client Run-time Library,则是实现远程调用的工具包,比如python的socket模块,最后通过底层网络实现实现数据的传输。

这个过程中最重要的就是序列化反序列化了,因为数据传输的数据包必须是二进制的,你直接丢一个python对象过去,人家可不认识,你必须把python对象序列化为二进制格式,传给Server端,Server端接收到之后,再反序列化为python对象。

2.2 python实现RPC

# 客户端

import rpyc

# 参数主要是host, port
conn = rpyc.connect('localhost', 9999)
# test是服务端的那个以"exposed_"开头的方法
print('start')
for i in range(100):
cResult = conn.root.cal(i)
print(cResult)
print('end') conn.close() # 服务端
from rpyc import Service
from rpyc.utils.server import ThreadedServer class TestService(Service): # 对于服务端来说, 只有以"exposed_"打头的方法才能被客户端调用,所以要提供给客户端的方法都得加"exposed_"
def exposed_cal(self, num):
return num*2 sr = ThreadedServer(TestService, port=9999, auto_register=False)
sr.start()

2.3 GRPC框架

目前流行的开源 RPC 框架还是比较多的,有阿里巴巴的 Dubbo、Facebook 的 Thrift、Google 的 gRPC、Twitter 的 Finagle 等。

gRPC:是 Google 公布的开源软件,基于最新的 HTTP 2.0 协议,并支持常见的众多编程语言。RPC 框架是基于 HTTP 协议实现的,底层使用到了 Netty 框架的支持。
Thrift:是 Facebook 的开源 RPC 框架,主要是一个跨语言的服务开发框架。用户只要在其之上进行二次开发就行,应用对于底层的 RPC 通讯等都是透明的。不过这个对于用户来说需要学习特定领域语言这个特性,还是有一定成本的。
Dubbo:是阿里集团开源的一个极为出名的 RPC 框架,在很多互联网公司和企业应用中广泛使用。协议和序列化框架都可以插拔是极其鲜明的特色。

以使用较为广泛的gRPC为例学习下RPC框架的使用

gRPC 是 Google 开放的一款 RPC (Remote Procedure Call) 框架,建立在 HTTP2 之上,使用 Protocol Buffers。

2.3.1 Protocol Buffers 简介

protocol buffers 是 Google 公司开发的一种数据描述语言,采用简单的二进制格式,比 XML、JSON 格式体积更小,编解码效率更高。用于数据存储、通信协议等方面。

通过一个 .proto 文件,你可以定义你的数据的结构,并生成基于各种语言的代码。目前支持的语言很多,有 Python、golang、js、java 等等。

2.3.2 gRPC 简介

有了 protocol buffers 之后,Google 进一步推出了 gRPC。通过 gRPC,我们可以在 .proto 文件中也一并定义好 service,让远端使用的 client 可以如同调用本地的 library 一样使用。

 
 

可以看到 gRPC Server 是由 C++ 写的,Client 则分別是 Java 以及 Ruby,Server 跟 Client 端则是通过 protocol buffers 来信息传递。

1. 定义功能函数

calculate.py

# -*- coding: utf-8 -*-
import math # 求平方
def square(x):
return math.sqrt(x)

2. 创建 .proto 文件

在这里描述我们要使用的 message 以及 service

syntax = "proto3";

message Number {
float value = 1;
} service Calculate {
rpc Square(Number) returns (Number) {}
}

3. 生成 gRPC 类

这部分可能是整个过程中最“黑盒子”的部分。我们将使用特殊工具自动生成类。

$ pip install grpcio grpcio-tools
$ python -m grpc_tools.protoc -I. --python_out=. --grpc_python_out=. calculate.proto

你会看到生成来两个文件:

  • calculate_pb2.py  —  包含 message(calculate_pb2.Number)
  • calculate_pb2_grpc.py  —  包含 server(calculate_pb2_grpc.CalculatorServicer) and client(calculate_pb2_grpc.CalculatorStub)

4. 创建 gRPC 服务端

server.py

# -*- coding: utf-8 -*-
import grpc
import calculate_pb2
import calculate_pb2_grpc
import calculate
from concurrent import futures
import time # 创建一个 CalculateServicer 继承自 calculate_pb2_grpc.CalculateServicer
class CalculateServicer(calculate_pb2_grpc.CalculateServicer):
def Square(self, request, context):
response = calculate_pb2.Number()
response.value = calculate.square(request.value)
return response # 创建一个 gRPC server
server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
# 利用 add_CalculateServicer_to_server 这个方法把上面定义的 CalculateServicer 加到 server 中
calculate_pb2_grpc.add_CalculateServicer_to_server(CalculateServicer(), server)
# 让 server 跑在 port 50051 中
print 'Starting server. Listening on port 50051.'
server.add_insecure_port('[::]:50051')
server.start() # 因为 server.start() 不会阻塞,添加睡眠循环以持续服务
try:
while True:
time.sleep(24 * 60 * 60)
except KeyboardInterrupt:
server.stop(0)

启动 gRPC server:

$ python server.py
Starting server. Listening on port 50051.

5. 创建 gRPC 客户端

client.py

 
# -*- coding: utf-8 -*-
import grpc
import calculate_pb2
import calculate_pb2_grpc # 打开 gRPC channel,连接到 localhost:50051
channel = grpc.insecure_channel('localhost:50051')
# 创建一个 stub (gRPC client)
stub = calculate_pb2_grpc.CalculateStub(channel)
# 创建一个有效的请求消息 Number
number = calculate_pb2.Number(value=16)
# 带着 Number 去调用 Square
response = stub.Square(number)
print response.value

启动 gRPC client:

$ python client.py
4.0

最终的文件结构:

 

三 总结

RPC 主要用于公司内部的服务调用,性能消耗低,传输效率高,实现复杂。

HTTP 主要用于对外的异构环境,浏览器接口调用,App 接口调用,第三方接口调用等。

RPC 使用场景(大型的网站,内部子系统较多、接口非常多的情况下适合使用 RPC):

  • 长链接。不必每次通信都要像 HTTP 一样去 3 次握手,减少了网络开销。
  • 注册发布机制。RPC 框架一般都有注册中心,有丰富的监控管理;发布、下线接口、动态扩展等,对调用方来说是无感知、统一化的操作。
  • 安全性,没有暴露资源操作。
  • 微服务支持。就是最近流行的服务化架构、服务化治理,RPC 框架是一个强力的支撑。

四 RPC没那么简单

要实现一个RPC不算难,难的是实现一个高性能高可靠的RPC框架。

比如,既然是分布式了,那么一个服务可能有多个实例,你在调用时,要如何获取这些实例的地址呢?

这时候就需要一个服务注册中心,比如在Dubbo里头,就可以使用Zookeeper作为注册中心,在调用时,从Zookeeper获取服务的实例列表,再从中选择一个进行调用。

那么选哪个调用好呢?这时候就需要负载均衡了,于是你又得考虑如何实现复杂均衡,比如Dubbo就提供了好几种负载均衡策略。

这还没完,总不能每次调用时都去注册中心查询实例列表吧,这样效率多低呀,于是又有了缓存,有了缓存,就要考虑缓存的更新问题,blablabla......

你以为就这样结束了,没呢,还有这些:

  • 客户端总不能每次调用完都干等着服务端返回数据吧,于是就要支持异步调用;
  • 服务端的接口修改了,老的接口还有人在用,怎么办?总不能让他们都改了吧?这就需要版本控制了;
  • 服务端总不能每次接到请求都马上启动一个线程去处理吧?于是就需要线程池;
  • 服务端关闭时,还没处理完的请求怎么办?是直接结束呢,还是等全部请求处理完再关闭呢?
  • ......

如此种种,都是一个优秀的RPC框架需要考虑的问题。

RPC的入门应用的更多相关文章

  1. Rpc简单入门

    RPC这个概念大家都应该很熟悉了,这里不在累述了:使用场景可以参考这篇,本篇主要分享下Thrift和Grpc在.Net Core环境下使用入门.Thirft或者Grps 都支持跨语言.跨平台的Rpc框 ...

  2. CSharp使用Thrift作为RPC框架入门(一)

    前言 本文将介绍由 Facebook 开发的远程服务调用框架 Apache Thrift,它采用接口描述语言定义并创建服务,支持可扩展的跨语言服务开发,所包含的代码生成引擎可以在多种语言中,如 C++ ...

  3. C#使用Thrift作为RPC框架入门(三)之三层架构

    前言 这是我们讲解Thrift框架的第三篇文章,前两篇我们讲了Thrift作为RPC框架的基本用法以及架构的设计.为了我们更好的使用和理解Thrift框架,接下来,我们将来学习一下Thrift框架提供 ...

  4. 刚学会 C++ 的小白用这个开源框架,做个 RPC 服务要多久?

    本文适合有 C++ 基础的朋友 本文作者:HelloGitHub-Anthony HelloGitHub 推出的<讲解开源项目>系列,本期介绍基于 C++ 的 RPC 开源框架--rest ...

  5. [源码解析] PyTorch 分布式(16) --- 使用异步执行实现批处理 RPC

    [源码解析] PyTorch 分布式(16) --- 使用异步执行实现批处理 RPC 目录 [源码解析] PyTorch 分布式(16) --- 使用异步执行实现批处理 RPC 0x00 摘要 0x0 ...

  6. [源码解析] PyTorch 分布式(18) --- 使用 RPC 的分布式管道并行

    [源码解析] PyTorch 分布式(18) --- 使用 RPC 的分布式管道并行 目录 [源码解析] PyTorch 分布式(18) --- 使用 RPC 的分布式管道并行 0x00 摘要 0x0 ...

  7. ApacheCN 深度学习译文集 20210125 更新

    新增了七个教程: PyTorch 中文官方教程 1.7 学习 PyTorch PyTorch 深度学习:60 分钟的突击 张量 torch.autograd的简要介绍 神经网络 训练分类器 通过示例学 ...

  8. PyTorch 1.4 中文文档校对活动正式启动 | ApacheCN

    一如既往,PyTorch 1.4 中文文档校对活动启动了! 认领须知 请您勇敢地去翻译和改进翻译.虽然我们追求卓越,但我们并不要求您做到十全十美,因此请不要担心因为翻译上犯错--在大部分情况下,我们的 ...

  9. 一个入门rpc框架的学习

    一个入门rpc框架的学习 参考 huangyong-rpc 轻量级分布式RPC框架 该程序是一个短连接的rpc实现 简介 RPC,即 Remote Procedure Call(远程过程调用),说得通 ...

随机推荐

  1. java中的枚举类enum

    enum SeasonEnum {//枚举类: 本类规定了SeasonEnum(季节)类只能有四个对象SPRING,SUMMER,AUMUTN,WINTER //创建枚举类的的四个对象SPRING,S ...

  2. maven中的陌生单词

    有个单词记不住啊: artifact:人工制品,手工艺品,加工品; 石器; 词根:fac,fact,fect,fic,fig=make,do,表示“做,制作”   因此 art i fact 意思很好 ...

  3. 【FZYZOJ】愚人节礼物 题解(状压DP)

    前言:麻麻我会写状压DP了! ---------------------------- 题目描述 愚人节到了!可爱的UOI小朋友要给孩子们送礼物(汗-原题不是可爱的打败图么= =..).在平面直角坐标 ...

  4. MyBatisPlus性能分析插件,条件构造器,代码自动生成器详解

    性能分析插件 我们在平时的开发中,会遇到一些慢sql,测试,druid MP(MyBatisPlus)也提供性能分析插件,如果超过这个时间就停止 不过官方在3.2版本的时候取消了,原因如下 条件构造器 ...

  5. 2020-06-22:已知两个非负数的异或值为M,两数之和为N,求这两个数?

    福哥答案2020-06-22: 1.遍历法时间复杂度:O(N)最好空间复杂度:O(1)平均空间复杂度:O(sqrt(N))最坏空间复杂度:O(N)[0,N/2]依次遍历,符合条件的就是需要的结果. 2 ...

  6. 用它5分钟以后,我放弃用了四年的 Flask

    有一个非常简单的需求:编写一个 HTTP接口,使用 POST 方式发送一个 JSON 字符串,接口里面读取发送上来的参数,对其中某个参数进行处理,并返回. 如果我们使用 Flask 来开发这个接口,那 ...

  7. 【HDU3038】How Many Answers Are Wrong - 带权并查集

    描述 TT and FF are ... friends. Uh... very very good friends -________-b FF is a bad boy, he is always ...

  8. Android Studio 代码回退

    1.VCS–Local History–Show History 或者 这个按钮 2.代码操作记录出现了,选定我们操作的一个历史阶段 3.点击左上角的按钮(revert),代码回退成功

  9. 你想了解的JDK 10版本更新都在这里

    「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...

  10. SpringBoot + SpringCloud Hystrix 实现服务熔断

    什么是Hystrix 在分布式系统中,每个服务都可能会调用很多其他服务,被调用的那些服务就是依赖服务,有的时候某些依赖服务出现故障也是很常见的. Hystrix是Netflix公司开源的一个项目,它提 ...