Description

有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器。

Input

第一行是一个整数,n。接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标。每一个实数精确到小数点后6位,且其绝对值都不超过20000。

Output

有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开。每个实数精确到小数点后3位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。

Sample Input

2
0.0 0.0
-1.0 1.0
1.0 0.0

Sample Output

0.500 1.500

HINT

数据规模:

对于40%的数据,1<=n<=3

对于100%的数据,1<=n<=10

提示:给出两个定义:

1、 球心:到球面上任意一点距离都相等的点。

2、 距离:设两个n为空间上的点A, B的坐标为(a1, a2, …, an), (b1, b2, …, bn),则AB的距离定义为:dist = sqrt( (a1-b1)^2 + (a2-b2)^2 + … + (an-bn)^2 )

这个题的思路就是可以吧第一行抽出来和其他n行联立进行高斯消元,注意系统差,下标从0还是从1开始

#include <iostream>
#include <cstdio>
#include <vector>
#include <cmath>
#include <algorithm>
#include <cstring>
using namespace std;
const double EPS=1E-8;
int n;
double A[20][20],a[20][20],x[20];
int Gauss(){
for(int i=1;i<=n;++i){
int pivot=i,col=i-1;
for(int j=i+1;j<=n;++j) if(abs(a[j][col])>abs(a[pivot][col])) pivot=j;
if(pivot!=i) for(int k=0;k<=n;++k) swap(a[i][k],a[pivot][k]);
if(abs(a[i][col])<EPS) return 0;
for(int j=col+1;j<=n;++j) a[i][j]/=a[i][col];
for(int j=i+1;j<=n;++j)
if(j!=i){
if(abs(a[j][col])<EPS) continue;
for(int k=col+1;k<=n;++k) a[j][k]-=a[j][col]*a[i][k];
}
}
for(int i=0;i<n;++i) x[i]=a[i+1][n];
double ans;
for(int i=n-1;i>=0;--i){
ans=x[i];for(int j=i+1;j<n;++j) ans-=a[i+1][j]*x[j];
x[i]=ans;
}
return 1;
}
int main(){
while(~scanf("%d",&n)){
for(int i=0;i<=n;++i){
for(int j=0;j<n;++j){
scanf("%lf",&A[i][j]);
}
}
//n变量
//讲第0行抽出来
memset(a,0,sizeof(a));
for(int i=1;i<=n;++i){
for(int j=0;j<n;++j){
a[i][j]=2*(A[0][j]-A[i][j]);
}
for(int j=0;j<n;++j){
a[i][n]+=(A[0][j]*A[0][j]-A[i][j]*A[i][j]);
}
}
if(!Gauss()) printf("err\n");
for(int i=0;i<n-1;++i){
printf("%.3f ",x[i]);
}
printf("%.3f\n",x[n-1]);
}
return 0;
}

bzoj1013球形空间产生器sphere 高斯消元(有系统差的写法的更多相关文章

  1. BZOJ-1013 球形空间产生器sphere 高斯消元+数论推公式

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3662 Solved: 1910 [Subm ...

  2. BZOJ1013球形空间产生器sphere 高斯消元

    @[高斯消元] Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球 ...

  3. [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...

  4. BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/Judg ...

  5. lydsy1013: [JSOI2008]球形空间产生器sphere 高斯消元

    题链:http://www.lydsy.com/JudgeOnline/problem.php?id=1013 1013: [JSOI2008]球形空间产生器sphere 时间限制: 1 Sec  内 ...

  6. BZOJ 1013 球形空间产生器sphere 高斯消元

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1013 题目大意: 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困 ...

  7. 【BZOJ 1013】【JSOI2008】球形空间产生器sphere 高斯消元基础题

    最基础的高斯消元了,然而我把j打成i连WA连跪,考场上再犯这种错误就真的得滚粗了. #include<cmath> #include<cstdio> #include<c ...

  8. 【BZOJ1013】球形空间产生器(高斯消元)

    [BZOJ1013]球形空间产生器(高斯消元) 题面 Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标, ...

  9. 【BZOJ1013】[JSOI2008] 球形空间产生器(高斯消元)

    点此看题面 大致题意: 给定一个\(n\)维球体上的\(n+1\)个点,请你求出这个球体的圆心的位置. 列出方程 这一看就是一道解方程题. 我们可以设这个球体的圆心的位置为\((x_1,x_2,..x ...

随机推荐

  1. luogu P2198 杀蚂蚁

    题目描述 经过小FF的研究,他发现蚂蚁们每次都走同一条长度为n个单位的路线进攻, 且蚂蚁们的经过一个单位长度所需的时间为T秒.也就是说,只要小FF在条路线上布防且给蚂蚁造成沉痛伤害就能阻止蚂蚁的进军. ...

  2. Redis-第五章节-8种数据类型

    目录 一.Redis对key的操作 二.五种数据类型 String类型 List(集合) Set(集合) Hash(哈希) Zset(有序集合) 三.三种特殊数据类型 geospatial(地理位置) ...

  3. centos7安装docker、docker-compose、es7.3.0、kibana7.3.0

    一.安装docker 1.更新yum包 sudo yum update 2.卸载旧版本(如果安装过旧版本的话) sudo yum remove docker docker-common docker- ...

  4. Py其他内置函数,文件修改

    其他内置函数 1.abs函数,取绝对值 print(abs(-1)) 2.all函数,判断可迭代对象是否全为真,有假直接假 假:0,'',None print(all([1,2,'1'])) prin ...

  5. 转 9 jmeter之检查点

    9 jmeter之检查点   jmeter有类似loadrunner检查点的功能,就是断言中的响应断言. 1.响应断言(对返回文字结果进行相应的匹配)右击请求-->添加-->断言--> ...

  6. Beating JSON performance with Protobuf https://auth0.com/blog/beating-json-performance-with-protobuf/

    Beating JSON performance with Protobuf https://auth0.com/blog/beating-json-performance-with-protobuf ...

  7. 关于MinGW64的调试

    学习的机房电脑能老了,都是xp系统.安装DEV C++后发现为MinGW64. 而我常用编译调试命令为: g++ -g *.cpp -o a gdb a 编译出的程序无法调试. 一直以为,根本就无法调 ...

  8. LOJ2195 旅行

    LOJ2195 旅行 题目描述S 国有 N 个城市,编号从 1 到 N.城市间用 N-1 条双向道路连接,满足从一个城市出发可以到达其它所有城市.每个城市信仰不同的宗教,如飞天面条神教.隐形独角兽教. ...

  9. QTREE----树剖

    题目内容: ---------------------------------------------------- Query on a tree Time Limit: 851MS   Memor ...

  10. (九)整合 ElasticSearch框架,实现高性能搜索引擎

    整合 ElasticSearch框架,实现高性能搜索引擎 1.SpringBoot整合ElasticSearch 1.1 核心依赖 1.2 配置文件 1.3 实体类配置 1.4 数据交互层 1.5 演 ...