这篇随笔介绍使用OpenCV进行图像处理的第二章 图像的运算,让我们踏上继续回顾OpenCV进行图像处理的奇妙之旅,不断地总结、回顾,以新的视角快速融入计算机视觉的奥秘世界。

2  图像的运算

复杂的图像处理是借助基础的图像运算来实现的,本章介绍图像运算的基本操作,为后续实现更加复杂的处理提供帮助。

2.1  图像加法运算

可以通过加法运算符“+”和cv2.add函数实现图像的加法运算,但这两种方法对数据求和后溢出255的处理方式不一样。

设a、b均为8为灰度图像,像素饱和值为255。a图像像素值为a,b图像像素值为b。

(一)加法运算符“+”

原理:取余运算:a+b = (a+b)mod(256)

语法格式:

print('a+b=\n',a+b)

该方法会使两数之和大于255时取余,两数之和小于255时不变。

(二)cv2.add()函数

语法格式:

result=cv2.add(a,b)

该方法会使两数之和大于255时置为255,两数之和小于255时不变。

在cv2.add()函数中,有下列三种用法:图像与图像加法、图像与数值加法、数值与图像加法,如:

img3=cv2.add(img1,img2)   #图像与图像加法
img3=cv2.add(img1,5) #图像与数值加法
img3=cv2.add(7,img2) #数值与图像加法

2.2  图像加权之和

实际图像加法过程中,可能要考虑不同图像的权重,也就是图像的加权之和。

使用cv2.addWeighted()函数实现,但需保证两幅图片大小和类型相同。

语法格式:

#alpha是img1的权重,beta是img2的权重,gamma是整体亮度调节参数,不能省略
img3=cv2.addWeighted(img1,alpha,img2,beta,gamma)

2.3  按位逻辑运算

按位逻辑运算的原理与电路中“与门”“或门”“异或门”“非门”类似,是非常重要的一种基本运算方式。

Opencv中使用如下函数进行按位逻辑运算:

cv2.bitwise_and()  #按位与,两逻辑值为真,则为真
cv2.bitwise_or() #按位或,两逻辑值有一真,则为真
cv2.bitwise_xor() #按位异或,两逻辑值相同为假,不同为真
cv2.bitwise_not() #按位非,逻辑值取反

其语法格式如下:

c=cv2.bitwise_and(a,b)
c=cv2.bitwise_or(a,b)
c=cv2.bitwise_xor(a,b)
c=cv2.bitwise_not(a,b)

注1:掩模图像用于对另一幅图片中ROI区域的掩盖处理,掩模图像只有两种数值:0和255,常和另一幅图像进行按位逻辑运算。一幅图片中的数值与掩模图像中的0值按位与后,数值变为0(黑色遮盖);与掩模图像中的255值按位与后,数值不变(原区域)。

注2:如果待处理图像为彩色,就需要将掩模图像转为BGR模式的彩色图像,如:

a=cv2.imread('tupian',1)    #读取图片
b=np.zeros(a.shape,dtype=np.uint8) #转为BGR类型

2.4  掩模(掩码)

上一小节中提到了掩模图像的概念,举例来解释,例如:

 1 import cv2
2 import numpy as np
3 img1=np.ones((4,4),dtype=np.uint8)*2 #生成4×4的二维数组img1
4 img2=np.ones((4,4),dtype=np.uint8)*6 #生成4×4的二维数组img2
5 mask=np.zeros((4,4),dtype=np.uint8) #生成4×4的掩模数组mask
6 mask[1:3,1:3]=1
7 img3=np.ones((4,4),dtype=np.uint8)*99 #生成4×4的二维数组img3
8 print('img1=\n',img1)
9 print('img2=\n',img2)
10 print('mask=\n',mask)
11 print('初始值img3=\n',img3)
12 img3=cv2.add(img1,img2,mask=mask) #img3与mask进行掩模运算
13 print('求和后的img3=\n',img3)

上例所示的掩模mask值有两种,一种是空值0,一种是非空值(一般取1或255等容易按位与操作的数值)。当mask值为0的像素点,与另一像素矩阵对应位点按位与操作后,数值依然是0,相当于把这一像素矩阵构成的图片用黑布遮盖掉一部分;当mask值非空,就可以处理这些非空值对应在另一像素矩阵上的位点。

当彩色图像与掩模图像计算时,需要将掩模转换为BGR模式的三通道彩色图,继而实现掩模运算。

2.5  位平面分解

将一幅灰度图像中不同像素位点上的同一比特位二进制数组合在一起,会得到一张二进制图像,该图像称为灰度图像的一个位平面,该过程叫做位平面分解。是不是还不明白什么叫做位平面?哈哈别着急,我们看下面举例。

设一张灰度图像的像素值为:

147 206 168 243
72 198 49 126
132 77 186 62
228 157 129 28

将其转化为二进制数为:

将这些像素点A同一比特位点上的值组合,得到8个位平面:

A0表示第0个位平面,依次类推。

位平面分解,有5个步骤 :图像预处理、构造提取矩阵、提取位平面、阈值处理、显示图像。其算法实现如下例所示:

 1 import cv2
2 import numpy as np
3 lena=cv2.imread('E:\python_opencv\lena.jpg',0)
4 cv2.imshow('lena',lena)
5 r,c=lena.shape
6 x=np.zeros((r,c,8),dtype=np.uint8) #设置各个位平面的提取矩阵,8个通道
7 for i in range(8):
8 x[:,:,i]=2**i #设置各个位平面提取矩阵的值2**i
9 r=np.zeros((r,c,8),dtype=np.uint8)
10 for i in range(8):
11 r[:,:,i]=cv2.bitwise_and(lena,x[:,:,i]) #原图与提取矩阵值按位与运算
12 mask=r[:,:,i]>0 #阈值处理
13 r[mask]=255
14 cv2.imshow(str(i),r[:,:,i])
15 cv2.waitKey()
16 cv2.destroyAllWindows()

2.6  图像加密和解密

将图像与秘钥图像按位异或,能够实现图像的加密;将加密后的图像再次与秘钥图像按位异或,可以实现图像的解密。对一个像素点加密和解密的举例如下:

bit_xor(216,178)=106  #对像素点216加密
bit_xor(106,178)=216 #对像素点216解密

图像的加密和解密程序举例如下:

encryption=cv2.bitwise_xor(lena,key)  #lena与key按位异或加密
dncryption=cv2.bitwise_xor(encryption,key) #加密图与key按位异或解密

2.7  数字水印

先介绍一个定义:最低有效位(Least Significant Bit, LSB)指一个二进制数中的第0位。

数字水印即一幅图像中的最低有效位上隐藏了信息,该信息可以是音频、视频、图像等,为了形象介绍,本节将隐藏的水印信息使用简单的二值图像表示。

实现数字水印分为两个过程:嵌入过程和提取过程。

嵌入过程:先将载体图像的像素进行二进制转化处理,然后把水印图像的像素值进行阈值处理变为1或0,最后把载体图像的最低有效位替换为二进制水印图像(按位或运算)。

提取过程:先读取嵌入水印后的图像,生成一个同样大小和类型的提取矩阵(元素值均为1),最后将嵌入水印的图像与该提取矩阵进行按位与运算。

这次内容就分享到这里了,下次继续更新第3章色彩空间的类型转换,希望与各位老师和小伙伴们交流学习~

【图像处理】使用OpenCV+Python进行图像处理入门教程(二)的更多相关文章

  1. Python开发的入门教程(二)-List和Tuple类型

    介绍 本文主要介绍Python中List和Tuple类型的基本知识和使用. Python创建list Python内置的一种数据类型是列表:list.list是一种有序的集合,可以随时添加和删除其中的 ...

  2. PySide——Python图形化界面入门教程(二)

    PySide——Python图形化界面入门教程(二) ——交互Widget和布局容器 ——Interactive Widgets and Layout Containers 翻译自:http://py ...

  3. Python开发的入门教程(一)-数据类型、变量

    介绍 Python第一门课程,是Python开发的入门教程,将介绍Python语言的特点和适用范围,Python基本的数据类型,条件判断和循环,函数,以及Python特有的切片和列表生成式. Pyth ...

  4. 无废话ExtJs 入门教程二十一[继承:Extend]

    无废话ExtJs 入门教程二十一[继承:Extend] extjs技术交流,欢迎加群(201926085) 在开发中,我们在使用视图组件时,经常要设置宽度,高度,标题等属性.而这些属性可以通过“继承” ...

  5. 无废话ExtJs 入门教程二十[数据交互:AJAX]

    无废话ExtJs 入门教程二十[数据交互:AJAX] extjs技术交流,欢迎加群(521711109) 1.代码如下: 1 <!DOCTYPE html PUBLIC "-//W3C ...

  6. 无废话ExtJs 入门教程二[Hello World]

    无废话ExtJs 入门教程二[Hello World] extjs技术交流,欢迎加群(201926085) 我们在学校里学习任何一门语言都是从"Hello World"开始,这里我 ...

  7. mongodb入门教程二

    title: mongodb入门教程二 date: 2016-04-07 10:33:02 tags: --- 上一篇文章说了mongodb最基本的东西,这边博文就在深入一点,说一下mongo的一些高 ...

  8. SpringBoot入门教程(二)CentOS部署SpringBoot项目从0到1

    在之前的博文<详解intellij idea搭建SpringBoot>介绍了idea搭建SpringBoot的详细过程, 并在<CentOS安装Tomcat>中介绍了Tomca ...

  9. Elasticsearch入门教程(二):Elasticsearch核心概念

    原文:Elasticsearch入门教程(二):Elasticsearch核心概念 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:ht ...

  10. RabbitMQ入门教程(二):简介和基本概念

    原文:RabbitMQ入门教程(二):简介和基本概念 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn ...

随机推荐

  1. c语言实现--双向循环链表操作

    1,双向链表相当于两个单向循环链表. 2,双向链表的结点定义. 1 struct DULNode 2 { 3 int data; 4 struct DULNode * prior; 5 struct ...

  2. Codeforces Round #547 (Div. 3) F1/2. Same Sum Blocks (Easy/Hard) (贪心,模拟)

    题意:有一长度为\(n\)的数组,求最多的区间和相同的不相交的区间的个数. 题解:我们可以先求一个前缀和,然后第一层循环遍历区间的右端点,第二层循环枚举左端点,用前缀和来\(O(1)\)求出区间和,\ ...

  3. 洛谷P1628合并序列【模板】(Trie+dfs)

    很久之前写的题了,当时不知道怎么dfs所以卡了一段时间,^_^ 题解:由于题目给了一大堆字符串,所以首先考虑应该可以建树,之后找到T所在的位置,对T所在的位置dfs就行了 代码: 1 #include ...

  4. python爬虫下载小视频和小说(基础)

    下载视频: 1 from bs4 import BeautifulSoup 2 import requests 3 import re 4 import urllib 5 6 7 def callba ...

  5. struct 和 class的区别

    struct和class如果按照在C的时代,还是有很大差别的. c中struct的定义如下: struct  结构名 {   成员表 }: 因为struct是一种数据类型,那么就肯定不能定义函数,所以 ...

  6. select(),fd_set(),fd_isset()

    1. select函数 1. 用途 在编程的过程中,经常会遇到许多阻塞的函数,好像read和网络编程时使用的recv, recvfrom函数都是阻塞的函数,当函数不能成功执行的时候,程序就会一直阻塞在 ...

  7. P1337 [JSOI2004]平衡点(模拟退火)题解

    题意: 如图:有n个重物,每个重物系在一条足够长的绳子上.每条绳子自上而下穿过桌面上的洞,然后系在一起.图中X处就是公共的绳结.假设绳子是完全弹性的(不会造成能量损失),桌子足够高(因而重物不会垂到地 ...

  8. mybatis(八)手写简易版mybatis

    一.画出流程图 二.设计核心类 二.V1.0 的实现 创建一个全新的 maven 工程,命名为 mebatis,引入 mysql 的依赖. <dependency> <groupId ...

  9. HDU 6155 Subsequence Count(矩阵 + DP + 线段树)题解

    题意:01串,操作1:把l r区间的0变1,1变0:操作2:求出l r区间的子序列种数 思路:设DP[i][j]为到i为止以j结尾的种数,假设j为0,那么dp[i][0] = dp[i - 1][1] ...

  10. BellmanFord为什么只需松弛V-1次

    首先s不用松弛,V-=1 然后对于其他的顶点..每次都至少能完全松弛一个顶点.. 为什么呢..因为初始d[s]=0,所以和s相邻接的边都将被松弛完全..无论松弛的顺序 那么对于这个图,无论松弛的顺序都 ...