【题解】[LNOI2014]LCA
\(\text{Solution:}\)
这题的转化思想很巧妙……
考虑把\(dep\)给拆掉。
首先可以明确的是,每一个\(LCA\)一定在\(root\to z\)的路径上。
考虑一个\(LCA\)被选中,意味\(root\to LCA\)这个路径上所有的值都\(+1\).
于是,我们可以把询问看成将点\(p\in [l,r],add(root\to p,1)\)并从\(z\)向根的路径上求和即可。
这个区间修改,区间查询显然的树剖线段树板子。而若对于每一个询问都做一次,复杂度显然不够。
考虑将询问离线。
将一个区间询问\([l,r]\)拆成区间\([l,l-1] and [1,r]\)并用差分的思想进行处理。于是,对每一个拆开的区间按照右端点排序(因为左端点都是\(1\))进行离线处理即可,这样就避免了每一次的清空操作。
总结:对于一个\(dep\)的询问,我们可以看成:
从\(i\)向根的路径上进行区间\(+1\).
从\(z\)向根的路径上进行区间求和。
这样,我们可以巧妙地通过区间加来规避对\(dep\)的询问。
笔者一开始硬挖掘编号连续的性质往线段树维护深度和的歪路上走了很久……一度自闭
值得记录的好题。
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int MAXN=5e5+10;
const int mod=201314;
int dep[MAXN],siz[MAXN],top[MAXN],head[MAXN],rt;
int tot,cnt,n,m,rk[MAXN],id[MAXN],dfstime,ls[MAXN];
int rs[MAXN],pa[MAXN],son[MAXN],qcnt,Ans[MAXN];
struct E{int nxt,to;}e[MAXN];
inline void link(int x,int y){e[++tot]=(E){head[x],y};head[x]=tot;}
inline int add(int x,int y){return (x+y)%mod;}
inline int mul(int x,int y){return 1ll*x*y%mod;}
struct SGT{int l,r,sum,tag;}tr[MAXN];
inline void pushup(int x){tr[x].sum=tr[ls[x]].sum+tr[rs[x]].sum;}
inline int LL(int x){return tr[x].r-tr[x].l+1;}
inline void pushdown(int x){
if(tr[x].tag){
int p=tr[x].tag;tr[x].tag=0;
tr[ls[x]].tag+=p;tr[rs[x]].tag+=p;
tr[ls[x]].tag%=mod;tr[rs[x]].tag%=mod;
tr[ls[x]].sum=add(tr[ls[x]].sum,mul(LL(ls[x]),p));
tr[rs[x]].sum=add(tr[rs[x]].sum,mul(LL(rs[x]),p));
}
}
void build(int l,int r,int x){
tr[x].l=l,tr[x].r=r;
if(l==r)return;
int mid=(l+r)>>1;
ls[x]=cnt++;rs[x]=cnt++;
build(l,mid,ls[x]);
build(mid+1,r,rs[x]);
pushup(x);
}
void dfs1(int x,int fa){
pa[x]=fa,siz[x]=1,dep[x]=dep[fa]+1;
for(int i=head[x];i;i=e[i].nxt){
int j=e[i].to;
if(j==fa)continue;
dfs1(j,x);siz[x]+=siz[j];
if(siz[j]>siz[son[x]])son[x]=j;
}
}
void dfs2(int x,int t){
top[x]=t,rk[id[x]=++dfstime]=x;
if(!son[x])return;dfs2(son[x],t);
for(int i=head[x];i;i=e[i].nxt){
int j=e[i].to;
if(j!=pa[x]&&j!=son[x])dfs2(j,j);
}
}
void update(int l,int r,int v,int x){
if(tr[x].l>=l&&tr[x].r<=r){
tr[x].tag=add(tr[x].tag,v);
tr[x].sum=add(tr[x].sum,mul(LL(x),v));
return;
}
int mid=(tr[x].l+tr[x].r)>>1;pushdown(x);
if(l<=mid)update(l,r,v,ls[x]);
if(mid<r)update(l,r,v,rs[x]);
pushup(x);
}
int query(int l,int r,int x){
if(tr[x].l>=l&&tr[x].r<=r)return tr[x].sum;
int T=0,mid=(tr[x].l+tr[x].r)>>1;pushdown(x);
if(l<=mid)T=add(T,query(l,r,ls[x]));
if(mid<r)T=add(T,query(l,r,rs[x]));
pushup(x);return T;
}
void updatechain(int x,int y,int v){
while(top[x]!=top[y]){
if(dep[x]<dep[y])swap(x,y);
update(id[top[x]],id[x],v,rt);
x=pa[top[x]];
}
if(id[x]>=id[y])swap(x,y);
update(id[x],id[y],v,rt);
}
int querychain(int x,int y){
int ans=0;
while(top[x]!=top[y]){
if(dep[x]<dep[y])swap(x,y);
ans=add(ans,query(id[top[x]],id[x],rt));
x=pa[top[x]];
}
if(id[x]>id[y])swap(x,y);
ans=add(ans,query(id[x],id[y],rt));
return ans;
}
struct Query{int pos,num,fg,z;}q[MAXN];
inline bool cmp(Query A,Query B){return A.pos<B.pos;}
pair<int,int>ans[MAXN];
signed main(){
scanf("%lld%lld",&n,&m);
for(int i=2;i<=n;++i){
int x;
scanf("%lld",&x);
x++;
link(x,i);link(i,x);
}
dfs1(1,0);dfs2(1,1);rt=cnt++;build(1,n,rt);
for(int i=1;i<=m;++i){
int a,b,c;
scanf("%lld%lld%lld",&a,&b,&c);
a++,b++,c++;
q[++qcnt]=(Query){a-1,i,0,c};
q[++qcnt]=(Query){b,i,1,c};
}
sort(q+1,q+qcnt+1,cmp);
int now=0;
for(int i=1;i<=qcnt;++i){
while(now<q[i].pos)updatechain(++now,1,1);
if(!q[i].fg)ans[q[i].num].first=querychain(q[i].z,1);
else ans[q[i].num].second=querychain(q[i].z,1);
}
for(int i=1;i<=m;++i)Ans[i]=(ans[i].second-ans[i].first+mod)%mod;
for(int i=1;i<=m;++i)printf("%lld\n",Ans[i]);
return 0;
}
【题解】[LNOI2014]LCA的更多相关文章
- 题解 LNOI2014 LCA
题目:传送门 这道题根本不用lca,也没有部分分... 考虑求两个点xy的lca的深度. 我们将x到树根所有点的值都加1,然后查询y到根的和,其实就是lca的深度. 所以本题离线一下上树剖乱搞就可以了 ...
- 【BZOJ3626】[LNOI2014]LCA 离线+树链剖分+线段树
[BZOJ3626][LNOI2014]LCA Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度 ...
- BZOJ 3626: [LNOI2014]LCA [树链剖分 离线|主席树]
3626: [LNOI2014]LCA Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2050 Solved: 817[Submit][Status ...
- bzoj 3626 [LNOI2014]LCA(离线处理+树链剖分,线段树)
3626: [LNOI2014]LCA Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1272 Solved: 451[Submit][Status ...
- bzoj 3626: [LNOI2014]LCA 离线+树链剖分
3626: [LNOI2014]LCA Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 426 Solved: 124[Submit][Status] ...
- BZOJ 3626: [LNOI2014]LCA( 树链剖分 + 离线 )
说多了都是泪啊...调了这么久.. 离线可以搞 , 树链剖分就OK了... -------------------------------------------------------------- ...
- 洛谷 P4211 [LNOI2014]LCA 解题报告
[LNOI2014]LCA 题意 给一个\(n(\le 50000)\)节点的有根树,询问\(l,r,z\),求\(\sum_{l\le i\le r}dep[lca(i,z)]\) 一直想启发式合并 ...
- P4211 [LNOI2014]LCA
P4211 [LNOI2014]LCA 链接 分析: 首先一种比较有趣的转化是,将所有点到1的路径上都+1,然后z到1的路径上的和,就是所有答案的deep的和. 对于多次询问,要么考虑有把询问离线,省 ...
- P4211 [LNOI2014]LCA LCT
P4211 [LNOI2014]LCA 链接 loj luogu 思路 多次询问\(\sum\limits_{l \leq i \leq r}dep[LCA(i,z)]\) 可以转化成l到r上的点到根 ...
- [BZOJ3626] [LNOI2014]LCA(树链剖分)
[BZOJ3626] [LNOI2014]LCA(树链剖分) 题面 给出一棵N个点的树,要求支持Q次询问,每次询问一个点z与编号为区间[l,r]内的点分别求最近公共祖先得到的最近公共祖先深度和.N, ...
随机推荐
- 是时候扔掉 Postman 了,Apifox 不香吗!
偶然间发现这款测试工具Apifox,暂时还没有想好该把它叫接口测试工具还是辅助开发工具.但是,给我感觉,就是很好用,而且后面还有很多开发的功能是我很期待的. 根据官方给出的简单描述,它能做的事就是: ...
- 广州做假证c
广州做假证[电/薇:187ヘ1184ヘ0909同号]办各类证件-办毕业证-办离婚证,办学位证书,办硕士毕业证,办理文凭学历,办资格证,办房产证不. 这是一个简单的取最大值程序,可以用于处理 i32 数 ...
- TypeError 之 Cannot convert undefined or null to object
分享一个今天遇到的一个bug , 希望对你也有用. 1.Object.keys()中传错了参数 2.由于undefined和null无法转成对象,所以如果它们做为Object.assign()的参数( ...
- 你不得不知的Java基础知识
本篇博客主要记录Java中面向对象的概念和Java语法的基础知识. 面向对象 什么是面向对象 面向对象是一种优秀的软件设计思想,是相对于面向过程.面向切面等设计思想的一种软件设计理念.它的核心思想是运 ...
- Intel-Pin的windows安装
环境安装 操作系统:windows10 需要环境: 1.Visual Studio Community 2019 Edition ( https://visualstudio.microsoft.c ...
- Windows7上开启ftp服务器功能
开启ftp服务功能 1 进入“控制面板”->“程序”->"打开或关闭Windows功能",找到“Internet信息服务”选项 2 将“Internet信息服务”选 ...
- Fragment时长统计那些事
注:本文同步发布于微信公众号:stringwu的互联网杂谈 frament时长统计那些事 页面停留时长作为应用统计的北极星指标里的重要指标之一,统计用户在某个页面的停留时长则变得很重要.而Fragme ...
- SpringBoot+Shiro+JPA+LayUI的后台管理系统
一.系统说明 资源下载路径:https://download.csdn.net/download/qq_37171817/12056804 本系统是一个用SpringBoot做后台开发框架,Shiro ...
- 双向绑定数据的实现(new Proxy 版本)
调用 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8& ...
- 【小白学PyTorch】11 MobileNet详解及PyTorch实现
文章来自微信公众号[机器学习炼丹术].我是炼丹兄,欢迎加我微信好友交流学习:cyx645016617. @ 目录 1 背景 2 深度可分离卷积 2.2 一般卷积计算量 2.2 深度可分离卷积计算量 2 ...