【题解】[LNOI2014]LCA
\(\text{Solution:}\)
这题的转化思想很巧妙……
考虑把\(dep\)给拆掉。
首先可以明确的是,每一个\(LCA\)一定在\(root\to z\)的路径上。
考虑一个\(LCA\)被选中,意味\(root\to LCA\)这个路径上所有的值都\(+1\).
于是,我们可以把询问看成将点\(p\in [l,r],add(root\to p,1)\)并从\(z\)向根的路径上求和即可。
这个区间修改,区间查询显然的树剖线段树板子。而若对于每一个询问都做一次,复杂度显然不够。
考虑将询问离线。
将一个区间询问\([l,r]\)拆成区间\([l,l-1] and [1,r]\)并用差分的思想进行处理。于是,对每一个拆开的区间按照右端点排序(因为左端点都是\(1\))进行离线处理即可,这样就避免了每一次的清空操作。
总结:对于一个\(dep\)的询问,我们可以看成:
从\(i\)向根的路径上进行区间\(+1\).
从\(z\)向根的路径上进行区间求和。
这样,我们可以巧妙地通过区间加来规避对\(dep\)的询问。
笔者一开始硬挖掘编号连续的性质往线段树维护深度和的歪路上走了很久……一度自闭
值得记录的好题。
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int MAXN=5e5+10;
const int mod=201314;
int dep[MAXN],siz[MAXN],top[MAXN],head[MAXN],rt;
int tot,cnt,n,m,rk[MAXN],id[MAXN],dfstime,ls[MAXN];
int rs[MAXN],pa[MAXN],son[MAXN],qcnt,Ans[MAXN];
struct E{int nxt,to;}e[MAXN];
inline void link(int x,int y){e[++tot]=(E){head[x],y};head[x]=tot;}
inline int add(int x,int y){return (x+y)%mod;}
inline int mul(int x,int y){return 1ll*x*y%mod;}
struct SGT{int l,r,sum,tag;}tr[MAXN];
inline void pushup(int x){tr[x].sum=tr[ls[x]].sum+tr[rs[x]].sum;}
inline int LL(int x){return tr[x].r-tr[x].l+1;}
inline void pushdown(int x){
if(tr[x].tag){
int p=tr[x].tag;tr[x].tag=0;
tr[ls[x]].tag+=p;tr[rs[x]].tag+=p;
tr[ls[x]].tag%=mod;tr[rs[x]].tag%=mod;
tr[ls[x]].sum=add(tr[ls[x]].sum,mul(LL(ls[x]),p));
tr[rs[x]].sum=add(tr[rs[x]].sum,mul(LL(rs[x]),p));
}
}
void build(int l,int r,int x){
tr[x].l=l,tr[x].r=r;
if(l==r)return;
int mid=(l+r)>>1;
ls[x]=cnt++;rs[x]=cnt++;
build(l,mid,ls[x]);
build(mid+1,r,rs[x]);
pushup(x);
}
void dfs1(int x,int fa){
pa[x]=fa,siz[x]=1,dep[x]=dep[fa]+1;
for(int i=head[x];i;i=e[i].nxt){
int j=e[i].to;
if(j==fa)continue;
dfs1(j,x);siz[x]+=siz[j];
if(siz[j]>siz[son[x]])son[x]=j;
}
}
void dfs2(int x,int t){
top[x]=t,rk[id[x]=++dfstime]=x;
if(!son[x])return;dfs2(son[x],t);
for(int i=head[x];i;i=e[i].nxt){
int j=e[i].to;
if(j!=pa[x]&&j!=son[x])dfs2(j,j);
}
}
void update(int l,int r,int v,int x){
if(tr[x].l>=l&&tr[x].r<=r){
tr[x].tag=add(tr[x].tag,v);
tr[x].sum=add(tr[x].sum,mul(LL(x),v));
return;
}
int mid=(tr[x].l+tr[x].r)>>1;pushdown(x);
if(l<=mid)update(l,r,v,ls[x]);
if(mid<r)update(l,r,v,rs[x]);
pushup(x);
}
int query(int l,int r,int x){
if(tr[x].l>=l&&tr[x].r<=r)return tr[x].sum;
int T=0,mid=(tr[x].l+tr[x].r)>>1;pushdown(x);
if(l<=mid)T=add(T,query(l,r,ls[x]));
if(mid<r)T=add(T,query(l,r,rs[x]));
pushup(x);return T;
}
void updatechain(int x,int y,int v){
while(top[x]!=top[y]){
if(dep[x]<dep[y])swap(x,y);
update(id[top[x]],id[x],v,rt);
x=pa[top[x]];
}
if(id[x]>=id[y])swap(x,y);
update(id[x],id[y],v,rt);
}
int querychain(int x,int y){
int ans=0;
while(top[x]!=top[y]){
if(dep[x]<dep[y])swap(x,y);
ans=add(ans,query(id[top[x]],id[x],rt));
x=pa[top[x]];
}
if(id[x]>id[y])swap(x,y);
ans=add(ans,query(id[x],id[y],rt));
return ans;
}
struct Query{int pos,num,fg,z;}q[MAXN];
inline bool cmp(Query A,Query B){return A.pos<B.pos;}
pair<int,int>ans[MAXN];
signed main(){
scanf("%lld%lld",&n,&m);
for(int i=2;i<=n;++i){
int x;
scanf("%lld",&x);
x++;
link(x,i);link(i,x);
}
dfs1(1,0);dfs2(1,1);rt=cnt++;build(1,n,rt);
for(int i=1;i<=m;++i){
int a,b,c;
scanf("%lld%lld%lld",&a,&b,&c);
a++,b++,c++;
q[++qcnt]=(Query){a-1,i,0,c};
q[++qcnt]=(Query){b,i,1,c};
}
sort(q+1,q+qcnt+1,cmp);
int now=0;
for(int i=1;i<=qcnt;++i){
while(now<q[i].pos)updatechain(++now,1,1);
if(!q[i].fg)ans[q[i].num].first=querychain(q[i].z,1);
else ans[q[i].num].second=querychain(q[i].z,1);
}
for(int i=1;i<=m;++i)Ans[i]=(ans[i].second-ans[i].first+mod)%mod;
for(int i=1;i<=m;++i)printf("%lld\n",Ans[i]);
return 0;
}
【题解】[LNOI2014]LCA的更多相关文章
- 题解 LNOI2014 LCA
题目:传送门 这道题根本不用lca,也没有部分分... 考虑求两个点xy的lca的深度. 我们将x到树根所有点的值都加1,然后查询y到根的和,其实就是lca的深度. 所以本题离线一下上树剖乱搞就可以了 ...
- 【BZOJ3626】[LNOI2014]LCA 离线+树链剖分+线段树
[BZOJ3626][LNOI2014]LCA Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度 ...
- BZOJ 3626: [LNOI2014]LCA [树链剖分 离线|主席树]
3626: [LNOI2014]LCA Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2050 Solved: 817[Submit][Status ...
- bzoj 3626 [LNOI2014]LCA(离线处理+树链剖分,线段树)
3626: [LNOI2014]LCA Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1272 Solved: 451[Submit][Status ...
- bzoj 3626: [LNOI2014]LCA 离线+树链剖分
3626: [LNOI2014]LCA Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 426 Solved: 124[Submit][Status] ...
- BZOJ 3626: [LNOI2014]LCA( 树链剖分 + 离线 )
说多了都是泪啊...调了这么久.. 离线可以搞 , 树链剖分就OK了... -------------------------------------------------------------- ...
- 洛谷 P4211 [LNOI2014]LCA 解题报告
[LNOI2014]LCA 题意 给一个\(n(\le 50000)\)节点的有根树,询问\(l,r,z\),求\(\sum_{l\le i\le r}dep[lca(i,z)]\) 一直想启发式合并 ...
- P4211 [LNOI2014]LCA
P4211 [LNOI2014]LCA 链接 分析: 首先一种比较有趣的转化是,将所有点到1的路径上都+1,然后z到1的路径上的和,就是所有答案的deep的和. 对于多次询问,要么考虑有把询问离线,省 ...
- P4211 [LNOI2014]LCA LCT
P4211 [LNOI2014]LCA 链接 loj luogu 思路 多次询问\(\sum\limits_{l \leq i \leq r}dep[LCA(i,z)]\) 可以转化成l到r上的点到根 ...
- [BZOJ3626] [LNOI2014]LCA(树链剖分)
[BZOJ3626] [LNOI2014]LCA(树链剖分) 题面 给出一棵N个点的树,要求支持Q次询问,每次询问一个点z与编号为区间[l,r]内的点分别求最近公共祖先得到的最近公共祖先深度和.N, ...
随机推荐
- android Studio(3.1) 常用快捷键
说 明 快捷键 全部保存 Ctrl + S 最大话/最小化编辑器 Ctrl + Shift + F12 搜索内容(包括代码和菜单) 按两次Shift 查找 Ctrl + F 查找下一个 F3 查找上 ...
- java初探(1)之静态页面化——客户端缓存
利用服务端缓存技术,将页面和对象缓存在redis中,可以减少时间浪费,内存开销.但在每次请求的过程中,仍然会有大量静态资源的请求和返回. 使用静态页面技术,页面不必要使用页面交互技术,比如thymel ...
- Google Kick Start Round G 2019
Google Kick Start Round G 2019 Book Reading 暴力,没啥好说的 #include<bits/stdc++.h> using namespace s ...
- 模拟CMOS集成电路-单级放大器增益直观理解
我们再看辅助定理: 这里,Gm是指输出与地短接时的跨导:Rout表示当输入电压为零时的输出电阻.这个是书上的原话,但是在推算公式时发现,这两个量的定义还不是完全完整,我 的理解是: 首先Gm是等效跨导 ...
- Istio 的配置分析
Istio 的配置分析 目录 Istio 的配置分析 Analyzer 的消息格式 ConflictingMeshGatewayVirtualServiceHosts 问题解决 举例 Conflict ...
- C006:多项式求值 horner法则
代码: #include "stdafx.h" int _tmain(int argc, _TCHAR* argv[]) { float x; do{ printf("E ...
- 【微信小程序】常用组件及自定义组件
(一) 常用标签 组件你可以理解为传统页面开发时候的各种标签,例如 div span 等等,我这里只说一些常用的,这样就能能搭建出一个基本的页面了,但是如果想要更加美观以及拥有更好的体验,就需要 XS ...
- oracle之三手工备份与恢复
手工备份与恢复 2.1 手工备份和恢复的命令 1)备份和还原都使用OS命令,如linux中的cp 2)恢复用sqlplus命令:recover 2.2 备份前要对数据库进行检查: 1) 检查需要备份的 ...
- PHP学习路线图(转)
PHP学习路线图 在网上很多人公布了太多的PHP学习路线图,本人在互联网公司工作十余年,也带了很多PHP入门的新手,将他们的一些问题和学习路线图为大家整理出来,希望很多小白少走弯路. 一. 网上某些错 ...
- [LeetCode]66. 加一(数组)
###题目 给定一个由整数组成的非空数组所表示的非负整数,在该数的基础上加一. 最高位数字存放在数组的首位, 数组中每个元素只存储单个数字. 你可以假设除了整数 0 之外,这个整数不会以零开头. 示例 ...