Problem Description

在双胞胎兄弟Eric与R.W的生日会上,他们共收到了N个礼物,生日过后他们决定分配这N个礼物(numv+numw=N)。对于每个礼物他们俩有着各自心中的价值vi和wi,他们要求各自分到的礼物数目|numv-numw|<=1,并且各自所衡量的礼物价值的差值|sumv-sumw|尽可能小,现在他们想知道最小的差值是多少。

 Input

第一行为一个整数表示数据组数T。 接下来T组数组,每组数据第一行为一个整数N。(N<=30) 第二行有N个整数,表示Eric所衡量的每个礼物的价值vi。(1<=vi<=10000000) 第三行也有N个整数,表示R.W所衡量的每个礼物的价值wi。(1<=wi<=10000000)

 Output

对于每组数据,输出最小的差值。

 Sample Input

131  2  34  2  1

 Sample Output

1

思路:这题一开始比较容易想到的是把所有状态都枚举一遍,但是这样的复杂度为2^30次,稳稳的超时了。所以我们可以把n件物品拆成两半,前一半的个数为n/2,后一半的个数为n-n/2。然后我们先预处理出前一半的状态,用c[i][j]表示前一半有i件物品给eric的第j种情况sumv-sumw的值。然后对于每一个i,0<=i<=n/2,我们进行从小到大排序,这里的排序是为了之后的二分。接着,我们就可以处理后一半了,枚举后一半的所有状态(0~(1<<m2)-1),算出sumw-sumv的值,记录次状态下eric取的个数num,然后在c[n/2-num]中找到最接近sumw-sumv的值就行了。 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <stack>
using namespace std;
#define maxn 100050
#define inf 999999999
int v[40],w[40];
int c[17][1<<16],d[17]; int chazhao(int num,int sum)
{
int i,j,t,p1,p2,minx=inf;
t=lower_bound(c[num]+1,c[num]+1+d[num],sum )-c[num];
if(t==d[num]+1){
t--;
minx=min(minx,abs(c[num][t]-sum) ); }
else{
p1=t;p2=t;
if(p1!=1){
p1--;
minx=min(minx,abs(c[num][p1]-sum) );
}
minx=min(minx,abs(c[num][t]-sum));
if(p2!=d[num]){
p2++;
minx=min(minx,abs(c[num][p2]-sum) );
}
}
return minx;
} int main()
{
int n,m,i,j,T,m1,m2,state,tot,num,sum,t,p1,p2;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(i=1;i<=n;i++){
scanf("%d",&v[i]);
}
for(i=1;i<=n;i++){
scanf("%d",&w[i]);
}
m1=n/2;
m2=n-m1;
memset(d,0,sizeof(d));
for(state=0;state<(1<<m1);state++){
tot=0;sum=0;
for(i=1;i<=m1;i++){
if(state&(1<<(i-1) )){
tot++;
sum+=v[i];
}
else sum-=w[i];
}
d[tot]++;
c[tot][d[tot] ]=sum;
}
for(i=0;i<=m1;i++){
sort(c[i]+1,c[i]+1+d[i]);
} int minx=inf;
for(state=0;state<(1<<m2);state++){
tot=0;sum=0;
for(i=1;i<=m2;i++){
if(state&(1<<(i-1))){
tot++;
sum-=v[m1+i];
}
else sum+=w[m1+i];
}
if((n%2==1) && (tot!=0) ){
num=n/2+1-tot;
minx=min(minx,chazhao(num,sum));
}
num=n/2-tot;
minx=min(minx,chazhao(num,sum));
}
printf("%d\n",minx);
}
return 0;
}

fzu2178礼物分配 (状压+二分)的更多相关文章

  1. Luogu P3092 [USACO13NOV]没有找零No Change【状压/二分】By cellur925

    题目传送门 可能是我退役/NOIP前做的最后一道状压... 题目大意:给你\(k\)个硬币,FJ想按顺序买\(n\)个物品,但是不能找零,问你最后最多剩下多少钱. 注意到\(k<=16\),提示 ...

  2. NOIP2016提高A组 A题 礼物—概率状压dp

    题目描述 夏川的生日就要到了.作为夏川形式上的男朋友,季堂打算给夏川买一些生 日礼物. 商店里一共有n种礼物.夏川每得到一种礼物,就会获得相应喜悦值Wi(每种礼物的喜悦值不能重复获得). 每次,店员会 ...

  3. 2018.08.19 NOIP模拟 dp(二分+状压dp)

    Dp 题目背景 SOURCE:NOIP2015-SHY-10 题目描述 一块土地有 n 个连续的部分,用 H[1],H[2],-,H[n] 表示每个部分的最初高度.有 n 种泥土可用,他们都能覆盖连续 ...

  4. 【BZOJ3312】[Usaco2013 Nov]No Change 状压DP+二分

    [BZOJ3312][Usaco2013 Nov]No Change Description Farmer John is at the market to purchase supplies for ...

  5. 【9.7校内测试】【二分+spfa】【最长上升子序列】【状压DP+贪心(?)】

    刘汝佳蓝书上的题,标程做法是从终点倒着$spfa$,我是二分答案正着$spfa$判断可不可行.效果是一样的. [注意]多组数据建边一定要清零啊QAQ!!! #include<iostream&g ...

  6. hdu 3681(bfs+二分+状压dp判断)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3681 思路:机器人从出发点出发要求走过所有的Y,因为点很少,所以就能想到经典的TSP问题.首先bfs预 ...

  7. HDU-3681-Prison Break(BFS+状压DP+二分)

    Problem Description Rompire is a robot kingdom and a lot of robots live there peacefully. But one da ...

  8. [luoguP3092] [USACO13NOV]没有找零No Change(状压DP + 二分)

    传送门 先通过二分预处理出来,每个硬币在每个商品处最多能往后买多少个商品 直接状压DP即可 f[i]就为,所有比状态i少一个硬币j的状态所能达到的最远距离,在加上硬币j在当前位置所能达到的距离,所有的 ...

  9. 20190716NOIP模拟赛T1 礼物(概率dp+状压)

    题目描述 夏川的生日就要到了.作为夏川形式上的男朋友,季堂打算给夏川买一些生 日礼物. 商店里一共有种礼物.夏川每得到一种礼物,就会获得相应喜悦值Wi(每种 礼物的喜悦值不能重复获得). 每次,店员会 ...

随机推荐

  1. Spring的自动装配与依赖注入

    Spring的自动装配与依赖注入 装配 = 创建Bean + 注入Bean 创建Bean 自动发现 显式注册Bean 注入Bean 基于配置的注入 自动注入 Spring的装配分为显式装配和隐式装配, ...

  2. 【SpringBoot1.x】SpringBoot1.x 安全

    SpringBoot1.x 安全 文章源码 环境搭建 SpringSecurity 是针对 Spring 项目的安全框架,也是 SpringBoot 底层安全模块默认的技术选型.他可以实现强大的 we ...

  3. Head First 设计模式 —— 13. 代理 (Proxy) 模式

    思考题 如何设计一个支持远程方法调用的系统?你要怎样才能让开发人员不用写太多代码?让远程调用看起来像本地调用一样,毫无瑕疵? P435 已经接触过 RPC 了,所以就很容易知道具体流程:客户端调用目标 ...

  4. Linux学习笔记 | 配置Samba

    Samba是在Linux和UNIX系统上实现SMB协议的一个免费软件,由服务器及客户端程序构成.SMB(Server Messages Block,信息服务块)是一种在局域网上共享文件和打印机的一种通 ...

  5. Python利用最优化算法求解投资内部收益率IRR【一】

    一. 内部收益率和净现值 内部收益率(Internal Rate of Return, IRR)其实要和净现值(Net Present Value, NPV)结合起来讲.净现值指的是某个投资项目给公司 ...

  6. cobalt strike出现连接超时情况解决办法

    服务器安装好teamserver服务后,进行连接,此时出现了连接超时的情况 检查方法: 一.检查端口是否正常开启 netstat -an | grep <设置的端口号>centos7可以用 ...

  7. ALV中的分隔条(SPLITTER_CONTROL)

    如上图,可以做成左右的分割,当然也可以做成上下的分割效果,在每个分割的容器内,显示各自的内容. 需要使用的class: cl_gui_splitter_container, cl_gui_custom ...

  8. Cookie&Session&Jsp总结

    知识点梳理 Cookie&Session&Jsp 1 会话技术 1.1 会话管理概述 1.1.1 会话技术介绍 会话:浏览器和服务器之间的多次请求和响应 (一次对话) 为了实现一些功能 ...

  9. SpringMVC下关于静态资源访问

    SpringMVC静态资源访问 聊一聊关于静态资源的访问问题 首先,我们要对web.xml里面的DispatcherServlet进行设置 <!-- 中央调度器--> <servle ...

  10. 微服务网关2-搭建Gateway服务

    一.创建父模块infrastructure 1.创建模块 在guli_parent下创建普通maven模块 Artifact:infrastructure 2.删除src目录 二.创建模块api_ga ...