• 题意:给你一张图,要你去边,使其成为一个边数为\(n-1\)的树,同时要求树的最小边权最大,如果最小边权最大的情况有多种,那么要求总边权最小.求生成树后的所有简单路径上的最小边权和.
  • 题解:刚开始想写最大生成树的,但是很明显不能满足总边权最小的要求.所以这里我们可以用二分,二分最小边权的值,然后再去跑kruskal看是否能构造成一颗树,这样的话我们就能得出满足题目条件的树.之后我们再将边权从大到小排序来枚举,用并查集维护连通块,假如两个块不连通,因为此时的边权是目前最小的,简单路径数是两个连通块数量的乘积,很显然贡献为包含这条边的简单路径数*边权.
  • 代码:
#include <bits/stdc++.h>
#define ll long long
#define fi first
#define se second
#define pb push_back
#define me memset
#define rep(a,b,c) for(int a=b;a<=c;++a)
#define per(a,b,c) for(int a=b;a>=c;--a)
const int N = 1e6 + 10;
const int mod = 1e9 + 7;
const int INF = 0x3f3f3f3f;
using namespace std;
typedef pair<int,int> PII;
typedef pair<ll,ll> PLL;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b) {return a/gcd(a,b)*b;} int n,m;
int p[N],sz[N]; struct misaka{
int a,b;
int val;
bool operator < (const misaka & mikoto) const{
return val<mikoto.val;
}
}e[N]; vector<misaka> v; int find(int x){
if(p[x]!=x) p[x]=find(p[x]);
return p[x];
} bool check(int x){
if(m-x+1<n-1) return false;
rep(i,1,n) p[i]=i; int cnt=0; rep(i,x,m){
int fa=find(e[i].a);
int fb=find(e[i].b);
if(fa!=fb){
p[fa]=fb;
cnt++;
}
}
return cnt==n-1;
} void build(int x){
int cnt=0; rep(i,1,n) p[i]=i; rep(i,x,m){
int a=e[i].a;
int b=e[i].b;
int val=e[i].val;
int fa=find(a);
int fb=find(b);
if(fa==fb) continue;
p[fa]=fb;
v.pb({a,b,val});
//cout<<a<<' '<<b<<' '<<val<<'\n';
cnt++;
if(cnt==n-1) break;
}
} int main() {
ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
cin>>n>>m; rep(i,1,n){
p[i]=i;
sz[i]=1;
} rep(i,1,m){
cin>>e[i].a>>e[i].b;
cin>>e[i].val;
} sort(e+1,e+1+m); int l=1,r=m; while(l<r){
int mid=(l+r+1)>>1;
if(check(mid)) l=mid;
else r=mid-1;
} build(l); reverse(v.begin(),v.end()); ll ans=0;
int cnt=1; rep(i,1,n) p[i]=i; for(auto w:v){
int fa=find(w.a);
int fb=find(w.b);
p[fa]=fb;
ans+=1ll*sz[fa]*sz[fb]*w.val;
sz[fb]+=sz[fa];
} cout<<ans<<'\n'; return 0;
}

2020 ICPC Asia Taipei-Hsinchu Regional Problem H Optimization for UltraNet (二分,最小生成树,dsu计数)的更多相关文章

  1. 2020 ICPC Asia Taipei-Hsinchu Regional Problem B Make Numbers (dfs搜索)

    题意:给你四个数字,你可以用这四个数字凑出四个1位数,一个2位数和两个1位数,或一个3位数和一个1位数,你可以用你凑出的数字进行\(+,-,x\)运算(所有运算符号至少出现一次),问你一共能得到多少个 ...

  2. 2019-2020 ICPC Asia Hong Kong Regional Contest

    题解: https://files.cnblogs.com/files/clrs97/19HKEditorial-V1.zip Code:(Part) A. Axis of Symmetry #inc ...

  3. The Preliminary Contest for ICPC Asia Nanjing 2019( B H F)

    B. super_log 题意:研究一下就是求幂塔函数 %m的值. 思路:扩展欧拉降幂. AC代码: #include<bits/stdc++.h> using namespace std ...

  4. 2019-2020 ICPC Asia Hong Kong Regional Contest J. Junior Mathematician 题解(数位dp)

    题目链接 题目大意 要你在[l,r]中找到有多少个数满足\(x\equiv f(x)(mod\; m)\) \(f(x)=\sum_{i=1}^{k-1} \sum_{j=i+1}^{k}d(x,i) ...

  5. HDU 4291 A Short problem(2012 ACM/ICPC Asia Regional Chengdu Online)

    HDU 4291 A Short problem(2012 ACM/ICPC Asia Regional Chengdu Online) 题目链接http://acm.hdu.edu.cn/showp ...

  6. Problem 1002-2017 ACM/ICPC Asia Regional Shenyang Online

    网络赛:2017 ACM/ICPC Asia Regional Shenyang Online 题目来源:cable cable cable Problem Description: Connecti ...

  7. hduoj 4710 Balls Rearrangement 2013 ACM/ICPC Asia Regional Online —— Warmup

    http://acm.hdu.edu.cn/showproblem.php?pid=4710 Balls Rearrangement Time Limit: 6000/3000 MS (Java/Ot ...

  8. hduoj 4715 Difference Between Primes 2013 ACM/ICPC Asia Regional Online —— Warmup

    http://acm.hdu.edu.cn/showproblem.php?pid=4715 Difference Between Primes Time Limit: 2000/1000 MS (J ...

  9. hduoj 4712 Hamming Distance 2013 ACM/ICPC Asia Regional Online —— Warmup

    http://acm.hdu.edu.cn/showproblem.php?pid=4712 Hamming Distance Time Limit: 6000/3000 MS (Java/Other ...

随机推荐

  1. 最全的HashMap源码解析!

    HashMap源码解析 HashMap采用键值对形式的存储结构,每个key对应唯一的value,查询和修改的速度很快,能到到O(1)的平均复杂度.他是非线程安全的,且不能保证元素的存储顺序. 他的关系 ...

  2. maven依赖与传递性依赖

    目录 依赖范围 传递性依赖 依赖调节 可选依赖 本文主要是针对<maven实战>书中关键知识点的学习记录,未免有纰漏或描述不到之处,建议购买阅读原书 首先贴出一个pom常见的一些元素释义 ...

  3. 基于Python开发数据宽表实例

    搭建宽表作用,就是为了让业务部门的数据分析人员,在日常工作可以直接提取所需指标,快速做出对应专题的数据分析.在实际工作中,数据量及数据源繁多,如果每个数据分析人员都从计算加工到出报告,除了工作效率巨慢 ...

  4. 与HBase对比,Cassandra的优势特性是什么?

    在1月9日Cassandra中文社区开年活动开始之前的闲聊时间,活动的四位嘉宾就"HBase和Cassandra的对比"这一话题展开了讨论.   总的来说,HBase和Cassan ...

  5. 【Docker】Docker启动停止重启 Redirecting to /bin/systemctl start docker.service

    [root@liuawen local]# docker -v Docker version 1.13.1, build cccb291/1.13.1 [root@liuawen local]# 启动 ...

  6. vmstat参数详解

    vmstat 5 可以使用ctrl+c停止vmstat,可以看到输出依赖于所用的操作系统,因此可能需要阅读一下手册来解读报告 第一行的值是显示子系统启动以来的平均值,第二行开始展示现在正在发生的情况, ...

  7. SDUST数据结构 - chap6 树与二叉树

    判断题: 选择题: 函数题: 6-1 求二叉树高度: 裁判测试程序样例: #include <stdio.h> #include <stdlib.h> typedef char ...

  8. C# 中的动态类型

    翻译自 Camilo Reyes 2018年10月15日的文章 <Working with the Dynamic Type in C#> [1] .NET 4 中引入了动态类型.动态对象 ...

  9. 中间件:ElasticSearch组件RestHighLevelClient用法详解

    本文源码:GitHub·点这里 || GitEE·点这里 一.基础API简介 1.RestHighLevelClient RestHighLevelClient的API作为ElasticSearch备 ...

  10. response返回特性

    1. response 返回特性 r=requests.get("http://www.baidu.com")print(r.text) #打印返回正文print(r.status ...