【hdu 3579】Hello Kiki(数论--拓展欧几里德 求解同余方程组)
题意:Kiki 有 X 个硬币,已知 N 组这样的信息:X%x=Ai , X/x=Mi (x未知)。问满足这些条件的最小的硬币数,也就是最小的正整数 X。
解法:转化一下题意就是 拓展欧几里德求解同余方程组了。我们可以得到 N 个方程:Mi*x+Ai=X。一些解释请看下面的代码。
1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6 typedef long long LL;
7
8 LL aa[8],mm[8];
9
10 LL mabs(LL x) {return x>0?x:-x;}
11 LL exgcd(LL a,LL b,LL& x,LL& y)
12 {
13 if (!b) {x=1,y=0; return a;}
14 LL d,tx,ty;
15 d=exgcd(b,a%b,tx,ty);
16 x=ty,y=tx-(a/b)*ty;
17 return d;
18 }
19 int main()
20 {
21 int T,n;
22 scanf("%d",&T);
23 for (int kase=1;kase<=T;kase++)
24 {
25 scanf("%d",&n);
26 for (int i=1;i<=n;i++) scanf("%I64d",&mm[i]);
27 for (int i=1;i<=n;i++) scanf("%I64d",&aa[i]);
28 LL a,m,d,x,y;
29 a=aa[1],m=mm[1];
30 bool ok=false;
31 for (int i=2;i<=n;i++)
32 {
33 d=exgcd(m,mm[i],x,y);//mx-mm[i]y=aa[i]-a
34 if ((aa[i]-a)%d!=0) {ok=true;break;}
35 x=x*((aa[i]-a)/d);
36 LL t=mabs(mm[i]/d);
37 x=(x%t+t)%t;
38 a=m*x+a,m=m*mm[i]/d;//保证了x最小,a相应的也是最小的
39 }
40 LL ans;
41 if (ok) ans=-1;
42 else {ans=a; if (!ans) ans+=m;}
43 printf("Case %d: %I64d\n",kase,ans);
44 }
45 return 0;
46 }
【hdu 3579】Hello Kiki(数论--拓展欧几里德 求解同余方程组)的更多相关文章
- 【poj 2891】Strange Way to Express Integers(数论--拓展欧几里德 求解同余方程组 模版题)
题意:Elina看一本刘汝佳的书(O_O*),里面介绍了一种奇怪的方法表示一个非负整数 m .也就是有 k 对 ( ai , ri ) 可以这样表示--m%ai=ri.问 m 的最小值. 解法:拓展欧 ...
- 【hdu 1573】X问题(数论--拓展欧几里德 求解同余方程组的个数)
题目:求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], -, X mod a[i] = b[i] ...
- 【poj 1061】青蛙的约会(数论--拓展欧几里德 求解同余方程)
题意:已知2只青蛙的起始位置 a,b 和跳跃一次的距离 m,n,现在它们沿着一条长度为 l 的纬线(圈)向相同方向跳跃.问它们何时能相遇?(好有聊的青蛙 (΄◞ิ౪◟ิ‵) *)永不相遇就输出&quo ...
- 【poj 2115】C Looooops(数论--拓展欧几里德 求解同余方程 模版题)
题意:有一个在k位无符号整数下的模型:for (variable = A; variable != B; variable += C) statement; 问循环的次数,若"永不停息&q ...
- 【hdu 1576】A/B(数论--拓展欧几里德 求逆元 模版题)
题意:给出 A%9973 和 B,求(A/B)%9973的值. 解法:拓展欧几里德求逆元.由于同余的性质只有在 * 和 + 的情况下一直成立,我们要把 /B 转化为 *B-1,也就是求逆元. 对于 B ...
- HDU3579:Hello Kiki(解一元线性同余方程组)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=3579 题目解析:求一元线性同余方程组的最小解X,需要注意的是如果X等于0,需要加上方程组通解的整数区间lc ...
- hdu 3579 Hello Kiki
不互质的中国剩余定理…… 链接http://acm.hdu.edu.cn/showproblem.php?pid=3579 #include<iostream>#include<st ...
- HDU 3579——Hello Kiki
好久没写什么数论,同余之类的东西了. 昨天第一次用了剩余定理解题,今天上百度搜了一下hdu中国剩余定理.于是就发现了这个题目. 题目的意思很简单.就是告诉你n个m[i],和n个a[i].表示一个数对m ...
- hdu 3579 Hello Kiki (中国剩余定理)
Hello Kiki Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
随机推荐
- 【C++】《C++ Primer 》第十七章
第十七章 标准库特殊设施 一.tuple类型 tuple是类似pair的模板,每个pair的成员类型都不相同,但每个pair都恰好有两个成员. 不同的tuple类型的成员类型也不相同,一个tuple可 ...
- Docker Java 镜像基础(四)
基于官方提供的centos 7.2.1511 基础镜像构建JDK 和tomcat 镜像,先构建JDK镜像,然后在基于JDK镜像构建tomcat镜像 构建 centos:latest 基础镜像: # 下 ...
- 攻防世界—pwn—guess_num
题目分析 checksec检查文件保护机制 这个结果看的我满是问号??? \n ida分析程序 是一个猜数字的游戏,需要全部输入正确才能得到flag 根据大佬的wp得出一下内容 先使用srand()进 ...
- oracle常见进度查询脚本
1.查看索引创建进度 /* Formatted on 2019/8/20 下午 05:08:25 (QP5 v5.163.1008.3004) */ SELECT SID, DECODE (total ...
- git 基本命令和操作
设置全局用户名+密码 $ git config --global user.name 'runoob' $ git config --global user.email test@runoob.com ...
- 翻译 - ASP.NET Core 基本知识 - 通用主机 (Generic Host)
翻译自 https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host?view=aspnetcore-5.0 ...
- CoeMonkey少儿编程第4章 变量
点击这里,现在就开启CodeMonkey的趣味编程之旅. 目标 了解什么是变量 了解变量的命名规则 掌握如何使用变量 变量 什么是变量?顾名思义,变量就是可以变化的量. 和变量相对的是常量,即不可变化 ...
- CMU数据库(15-445)-实验2-B+树索引实现(中)删除
3. Delete 实现 附上实验2的第一部分 https://www.cnblogs.com/JayL-zxl/p/14324297.html 3. 1 删除算法原理 如果叶子结点中没有相应的key ...
- 聊一聊:Service层你觉得有用吗?
前段日子在社群(点击加入)里看到有人讨论关于Service层接口的问题,DD也经常碰到周围的新人有问过一些类似的问题:一定要写个Service层的接口吗?Service层的接口到底用做什么用的呢?好像 ...
- jmeter-命令行执行及测试报告导出
问题1:GUI方式能够进行测试报告导出? 回答:目前找了很多资料,没有找到采用GUI方式测试完成,然后命令方式导出测试报告: 问题2:命令行导出测试报告的前提都有啥?---- 这里参考了老_张大大的博 ...