SPOJ Favorite Dice(概率dp)
题意:
一个骰子,n个面,摇到每一个面的概率都一样。问你把每一个面都摇到至少一次需要摇多少次,求摇的期望次数
题解:
dp[i]:已经摇到i个面,还需要摇多少次才能摇到n个面的摇骰子的期望次数
因为我们只知道dp[n]的值,所以我们只能倒推,dp[n]=0(感觉大部分概率dp都是倒推~~~~)
dp[i]=i/n*dp[i]+(n-i)/ndp[i+1]+1
化简一下:
dp[i]=dp[i+1]+n/(n-i)
代码:
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
using namespace std;
const int maxn=1e3+10;
double dp[maxn];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
double n;
memset(dp,0,sizeof(dp));
scanf("%lf",&n);
dp[int(n)]=0.0;
for(int i=n-1;i>=0;--i)
{ dp[i]=dp[i+1]+n/(n-i);
}
printf("%.2lf\n",dp[0]);
}
return 0;
}
SPOJ Favorite Dice(概率dp)的更多相关文章
- Throwing Dice(概率dp)
C - Throwing Dice Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu Lig ...
- HDU 4599 Dice (概率DP+数学+快速幂)
题意:给定三个表达式,问你求出最小的m1,m2,满足G(m1) >= F(n), G(m2) >= G(n). 析:这个题是一个概率DP,但是并没有那么简单,运算过程很麻烦. 先分析F(n ...
- [spoj Favorite Dice ][期望dp]
(1)https://vjudge.net/problem/SPOJ-FAVDICE 题意:有一个n面的骰子,每一面朝上的概率相同,求所有面都朝上过至少一次的总次数期望. 题解:令dp[i]表示 i ...
- hdu 4599 Dice 概率DP
思路: 1.求f[n];dp[i]表示i个连续相同时的期望 则 dp[0]=1+dp[1] dp[1]=1+(5dp[1]+dp[2])/6 …… dp[i]=1+(5dp[1 ...
- hdu 4652 Dice 概率DP
思路: dp[i]表示当前在已经投掷出i个不相同/相同这个状态时期望还需要投掷多少次 对于第一种情况有: dp[0] = 1+dp[1] dp[1] = 1+((m-1)*dp[1]+dp[2])/m ...
- dice 概率论 概率DP
题目链接: http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1010&cid=459 找出公式,公式有实际意义,某种情形当 ...
- 【整理】简单的数学期望和概率DP
数学期望 P=Σ每一种状态*对应的概率. 因为不可能枚举完所有的状态,有时也不可能枚举完,比如抛硬币,有可能一直是正面,etc.在没有接触数学期望时看到数学期望的题可能会觉得很阔怕(因为我高中就是这么 ...
- HDU 3076:ssworld VS DDD(概率DP)
http://acm.split.hdu.edu.cn/showproblem.php?pid=3076 ssworld VS DDD Problem Description One day, s ...
- HDU 4405:Aeroplane chess(概率DP入门)
http://acm.split.hdu.edu.cn/showproblem.php?pid=4405 Aeroplane chess Problem Description Hzz loves ...
随机推荐
- JVM 源码分析(三):深入理解 CAS
前言 什么是 CAS Java 中的 CAS JVM 中的 CAS 前言 在上一篇文章中,我们完成了源码的编译和调试环境的搭建. 鉴于 CAS 的实现原理比较简单, 然而很多人对它不够了解,所以本篇将 ...
- 克隆slave
在日常生活中,我们做的比较多的操作就是在线添加从库,比如线上有一主一丛两个数据库,由于业务的需要一台从库的读取量无法满足现在的需求,这样就需要我们在线添加从库,出于安全考虑,我们通常需要在从库上进行在 ...
- 【MySQL】ERROR 1820 (HY000): You must reset your password using ALTER USER statement before executing
今天上午遇到了一个问题,新创建的mysql5.7的数据库,由于初始化有点问题,没有给root密码,用了免密码登录. 但是,修改了root密码之后,把配置中的免密登录的配置注释掉后,重启服务.服务正常启 ...
- C语言流程图画法(C语言学习笔记)
常用符号及其含义 图片来自百度文库 https://wenku.baidu.com/view/beb410dea216147916112853.html 常用结构 N-S图
- 关于postgresql中numeric和decimal的精度和标度问题
精度即数的有效数字个数 2.5的有效数字个数是2,但是053.2的有效数字个数是3 标度是小数点的位数 例如numeric(2,1),即这个数必须是两位,并且小数后面最多有一位,多出来的小数会被四舍五 ...
- apijson简单使用
apijson简单使用 介绍 APIJSON 是一种专为 API 而生的 JSON 网络传输协议 以及 基于这套协议实现的 ORM 库.为简单的增删改查.复杂的查询.简单的事务操作 提供了完全自动化的 ...
- [usaco2008 Oct]Pasture Walking 牧场旅行
题目描述 n个被自然地编号为1..n奶牛(1<=n<=1000)正在同样被方便的编号为1..n的n个牧场中吃草.更加自然而方便的是,第i个奶牛就在第i个牧场中吃草. 其中的一些对牧场被总共 ...
- (数据科学学习手札104)Python+Dash快速web应用开发——回调交互篇(上)
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的系列教程Python+Dash快速web ...
- PAT练习num3-跟奥巴马一起学编程
美国总统奥巴马不仅呼吁所有人都学习编程,甚至以身作则编写代码,成为美国历史上首位编写计算机代码的总统.2014 年底,为庆祝"计算机科学教育周"正式启动,奥巴马编写了很简单的计算机 ...
- 微服务网关1-Spring Cloud Gateway简介
一.网关基本概念 1.API网关介绍 API 网关出现的原因是微服务架构的出现,不同的微服务一般会有不同的网络地址,而外部客户端可能需要调用多个服务的接口才能完成一个业务需求,如果让客户端直接与各 ...