【noi 2.6_9289】Ant Counting 数蚂蚁{Usaco2005 Nov}(DP)
题意:有M个家族的蚂蚁,各Ni只(互相相同)。问选出 l~r 只的不同方案数。
解法:很基础的一种DP,不要被“排列组合”所迷惑了啊~我之前接触过这个类型,可惜又忘了,一定要记住!
这是一种类型的DP——M种N个进行DP,定义f[i][j]表示前 i 种中(这题是“家族”)选了 j 个(“只”蚂蚁)的方案数。再进行分层DP。也类似于多重背包问题的解法。
所以状态f[i][j],是可以第 i 种选0~Ni只,也就是前 i-1 种选 j~j-Ni 只。
f[i][j] = f[i-1][j]+f[i-1][j-1]+...+f[i-1][j-Ni]
= f[i-1][j]+(f[i-1][j-1]+...+f[i-1][j-Ni]+f[i-1][j-Ni-1])-f[i-1][j-Ni-1]
= f[i-1][j]+f[i][j-1]-f[i-1][j-Ni-1]。 P.S.由于要保证 j 被减后>=0,所以我代码中用了比较后的k。
这样子利用前缀和优化时间+滚动数组优化空间就可以了。
1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 #include<algorithm>
6 using namespace std;
7 #define M 1010
8 #define N 100010
9 #define mod 1000000
10
11 int a[N],h[M],f[2][N];//h[i]就是题目中的Ni
12 int mmin(int x,int y) {return x<y?x:y;}
13
14 int main()
15 {
16 int m,n,l,r;
17 scanf("%d%d%d%d",&m,&n,&l,&r);
18 for (int i=1;i<=n;i++) scanf("%d",&a[i]);
19 sort(a+1,a+1+n);
20 int t=1; h[1]=1,h[m+1]=n+1;
21 for (int i=2;i<=n;i++)
22 if (a[i]!=a[i-1]) h[++t]=i;
23
24 f[0][0]=1;
25 for (int j=1;j<h[2];j++) f[0][j]=0;
26 int u=1;
27 for (int i=1;i<=m;i++)
28 {
29 f[u][0]=1;
30 for (int j=1;j<h[i+1];j++)
31 {
32 int k=mmin(h[i+1]-h[i],j);//当前状态对于第i种最多能选的个数
33 f[u][j]=((f[u][j-1]+f[1-u][j])%mod-f[1-u][j-k-1]%mod+mod)%mod;
34 //for (int k=0;k<=h[i+1]-h[i]&&k<=j;k++)
35 // f[i][j]+=f[i-1][j-k];
36 }
37 u=1-u;
38 }
39 int ans=0;
40 for (int j=l;j<=r;j++) ans=(ans+f[1-u][j])%mod;
41 printf("%d\n",ans);
42 return 0;
43 }
【noi 2.6_9289】Ant Counting 数蚂蚁{Usaco2005 Nov}(DP)的更多相关文章
- bzoj 2023: [Usaco2005 Nov]Ant Counting 数蚂蚁【生成函数||dp】
用生成函数套路推一推,推完老想NTT--实际上把这个多项式乘法看成dp然后前缀和优化一下即可 #include<iostream> #include<cstdio> using ...
- BZOJ2023: [Usaco2005 Nov]Ant Counting 数蚂蚁
2023: [Usaco2005 Nov]Ant Counting 数蚂蚁 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 56 Solved: 16[S ...
- 1630/2023: [Usaco2005 Nov]Ant Counting 数蚂蚁
2023: [Usaco2005 Nov]Ant Counting 数蚂蚁 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 85 Solved: 40[S ...
- bzoj2023[Usaco2005 Nov]Ant Counting 数蚂蚁*&&bzoj1630[Usaco2007 Demo]Ant Counting*
bzoj2023[Usaco2005 Nov]Ant Counting 数蚂蚁&&bzoj1630[Usaco2007 Demo]Ant Counting 题意: t个族群,每个族群有 ...
- bzoj1630 / bzoj2023 [Usaco2005 Nov]Ant Counting 数蚂蚁
Description 有一天,贝茜无聊地坐在蚂蚁洞前看蚂蚁们进进出出地搬运食物.很快贝茜发现有些蚂蚁长得几乎一模一样,于是她认为那些蚂蚁是兄弟,也就是说它们是同一个家族里的成员.她也发现整个 ...
- BZOJ2023: [Usaco2005 Nov]Ant Counting 数蚂蚁(dp)
题意 题目描述的很清楚... 有一天,贝茜无聊地坐在蚂蚁洞前看蚂蚁们进进出出地搬运食物.很快贝茜发现有些蚂蚁长得几乎一模一样,于是她认为那些蚂蚁是兄弟,也就是说它们是同一个家族里的成员.她也发现整个 ...
- BZOJ 2023 [Usaco2005 Nov]Ant Counting 数蚂蚁:dp【前缀和优化】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2023 题意: 有n个家族,共m只蚂蚁(n <= 1000, m <= 1000 ...
- 【bzoj2023/1630】[Usaco2005 Nov]Ant Counting 数蚂蚁 dp
题解: 水题 f[i][j] 前i种用了j个,前缀和优化就可以了
- [poj3046][Ant counting数蚂蚁]
题目链接 http://noi.openjudge.cn/ch0206/9289/ 描述 Bessie was poking around the ant hill one day watching ...
随机推荐
- 【C++】《Effective C++》第二章
第二章 构造/析构/赋值运算 条款05:了解C++默默编写并调用哪些函数 默认函数 一般情况下,编译器会为类默认合成以下函数:default构造函数.copy构造函数.non-virtual析构函数. ...
- Python3爬取小说并保存到文件
问题 python课上,老师给同学们布置了一个问题,因为这节课上学的是正则表达式,所以要求利用python爬取小说网的任意小说并保存到文件. 我选的网站的URL是'https://www.biquka ...
- python模块详解 | shutil
简介: shutil是python的一个内置模块,提供了许多关于文件和文件集合的高级操作,特别提供文件夹与文件操作.归档操作了支持文件复制和删除的功能. 文件夹与文件操作: copyfileobj(f ...
- MySQL常用的一些(就几个)聚合函数
聚合函数 (常用) 函数名称 描述 CONUT() 记数 SUM() 求和 AVG() 平均值 MAX() 最大值 MIN() 最小值 -- ================= 聚合函数 ====== ...
- CopyOnWriteArrayList 读写分离,弱一致性
为什么会有CopyOnWriteArrayList? 我们知道ArrayList和LinkedList实现的List都是非线程安全的,于是就有了Vector,它是基于ArrayList的线程安全集合, ...
- /var/lib/zabbix/percona/scripts/get_mysql_stats_wrapper.sh: line 19: mysql: command not found
[root@test ~]# tail -f /tmp/zabbix_agentd.log /var/lib/zabbix/percona/scripts/get_mysql_stats_wrappe ...
- 【十天自制软渲染器】DAY 02:画一条直线(DDA 算法 & Bresenham’s 算法)
推荐关注公众号「卤蛋实验室」或访问博客原文,更新更及时,阅读体验更佳 第一天我们搭建了 C++ 的运行环境并画了一个点,根据 点 → 线 → 面 的顺序,今天我们讲讲如何画一条直线. 本文主要讲解直线 ...
- let关键字:加强版的var关键字
本文首发于个人网站:let关键字:加强版的var关键字 你好,今天大叔想和你唠扯唠扯 ES6 新增的关键字 -- let.再说 let 的具体用法之前,大叔想先和你说说大叔自己对 let 的感受 -- ...
- ASP.NET MVC--sqlserver数据库脚本的导入导出
1.右键选择数据库---任务----生成脚本 2.弹出如下框 导出整个表,默认下一步,否则选择特定数据库对象表单选框 3.修改文件名路径,可以保存脚本到制定路径,否则为默认,点击高级进入 要编写脚本的 ...
- Java 栈的使用
讲栈之前,要先讲一下Deque双端队列 既可以添加到队尾,也可以添加到队首 既可以从队首获取又可以从队尾获取 public interface Deque<E> extends Queue ...