1 //#include <bits/stdc++.h>
2 #include<cstdio>
3 #include<cstring>
4 #include<algorithm>
5 #include<iostream>
6 #include<string>
7 #include<vector>
8 #include<stack>
9 #include<bitset>
10 #include<cstdlib>
11 #include<cmath>
12 #include<set>
13 #include<list>
14 #include<deque>
15 #include<map>
16 #include<queue>
17
18 using namespace std;
19
20 const int N = 1000010;
21
22 typedef long long LL;
23 LL TT,nn,k;
24 namespace Min25 {
25
26 int prime[N], id1[N], id2[N], flag[N], ncnt, m;
27
28 LL g[N], sum[N], a[N], T, n;
29 inline void fff()
30 {
31 for(int i=0;i<=N;i++){
32 prime[i]=0;
33 id1[i]=0;
34 id2[i]=0;
35 flag[i]=0;
36 g[i]=0;
37 sum[i]=0;
38 a[i]=0;
39 }
40 ncnt=0;
41 m=0;
42 T=0;
43 n=0;
44 }
45 inline int ID(LL x) {
46 return x <= T ? id1[x] : id2[n / x];
47 }
48
49 inline LL calc(LL x) {
50 return x * (x + 1) / 2 - 1;
51 }
52
53 inline LL f(LL x) {
54 return x;
55 }
56
57 inline void init() {
58 T = sqrt(n + 0.5);
59 for (int i = 2; i <= T; i++) {
60 if (!flag[i]) prime[++ncnt] = i, sum[ncnt] = sum[ncnt - 1] + i;
61 for (int j = 1; j <= ncnt && i * prime[j] <= T; j++) {
62 flag[i * prime[j]] = 1;
63 if (i % prime[j] == 0) break;
64 }
65 }
66 for (LL l = 1; l <= n; l = n / (n / l) + 1) {
67 a[++m] = n / l;
68 if (a[m] <= T) id1[a[m]] = m; else id2[n / a[m]] = m;
69 g[m] = calc(a[m]);
70 }
71 for (int i = 1; i <= ncnt; i++)
72 for (int j = 1; j <= m && (LL)prime[i] * prime[i] <= a[j]; j++)
73 g[j] = g[j] - (LL)prime[i] * (g[ID(a[j] / prime[i])] - sum[i - 1]);
74 }
75
76 inline LL solve(LL x) {
77 if (x <= 1) return x;
78 return n = x, init(), g[ID(n)];
79 }
80
81 }
82
83 void extend_gcd(LL a,LL b,LL &x,LL &y)
84 {
85 if(b==0) {
86 x=1,y=0;
87 return;
88 }
89 extend_gcd(b,a%b,x,y);
90 LL tmp=x;
91 x=y;
92 y=tmp-(a/b)*y;
93 }
94 LL mod_inverse(LL a,LL m)
95 {
96 LL x,y;
97 extend_gcd(a,m,x,y);
98 return (m+x%m)%m;
99 }
100 /*int main()
101 {
102 LL sum;
103 cin>>TT;
104 while(TT--){
105 sum=0;
106
107 scanf("%lld%lld",&nn,&k);
108 if(nn==1){
109 printf("0\n");
110 }else if(nn==2){
111 printf("6\n");
112 }else{
113 LL a=mod_inverse(2,k);
114 //cout<<a<<endl;
115 sum=(((((nn%k)*(nn%k))%k+(nn*3)%k)%k)*a)%k;
116 //cout<<sum<<endl;
117 Min25::fff();
118 sum=(sum-4+Min25::solve(nn+1))%k;
119 printf("%lld\n",sum%k);
120 }
121 }
122 return 0;
123 }*/
124 int main()
125 {
126 int n;
127 scanf("%d",&n);
128 printf("%d\n",Min25::solve(n));
129 }
//#include <bits/stdc++.h>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
using namespace std;
const int N = 1000010;
typedef long long LL;
LL TT,nn,k;
namespace Min25 {
    int prime[N], id1[N], id2[N], flag[N], ncnt, m;
  
    LL g[N], sum[N], a[N], T, n;
    inline void fff()
    {
        for(int i=0;i<=N;i++){
            prime[i]=0;
            id1[i]=0;
            id2[i]=0;
            flag[i]=0;
            g[i]=0;
            sum[i]=0;
            a[i]=0;
        }
        ncnt=0;
        m=0;
        T=0;
        n=0;
    }
    inline int ID(LL x) {
        return x <= T ? id1[x] : id2[n / x];
    }
    inline LL calc(LL x) {
        return x * (x + 1) / 2 - 1;
    }
    inline LL f(LL x) {
        return x;
    }
    inline void init() {
        T = sqrt(n + 0.5);
        for (int i = 2; i <= T; i++) {
            if (!flag[i]) prime[++ncnt] = i, sum[ncnt] = sum[ncnt - 1] + i;
            for (int j = 1; j <= ncnt && i * prime[j] <= T; j++) {
                flag[i * prime[j]] = 1;
                if (i % prime[j] == 0) break;
            }
        }
        for (LL l = 1; l <= n; l = n / (n / l) + 1) {
            a[++m] = n / l;
            if (a[m] <= T) id1[a[m]] = m; else id2[n / a[m]] = m;
            g[m] = calc(a[m]);
        }
        for (int i = 1; i <= ncnt; i++) 
            for (int j = 1; j <= m && (LL)prime[i] * prime[i] <= a[j]; j++) 
                g[j] = g[j] - (LL)prime[i] * (g[ID(a[j] / prime[i])] - sum[i - 1]);
    }
    inline LL solve(LL x) {
        if (x <= 1) return x;
        return n = x, init(), g[ID(n)];
    }
}
void extend_gcd(LL a,LL b,LL &x,LL &y)
{
    if(b==0) {
        x=1,y=0;
        return;
    }
    extend_gcd(b,a%b,x,y);
    LL tmp=x;
    x=y;
    y=tmp-(a/b)*y;
}
LL mod_inverse(LL a,LL m)
{
    LL x,y;
    extend_gcd(a,m,x,y);
    return (m+x%m)%m;
}
/*int main()
{
    LL sum;
    cin>>TT;
    while(TT--){
        sum=0;
        scanf("%lld%lld",&nn,&k);
        if(nn==1){
            printf("0\n");
        }else if(nn==2){
            printf("6\n");
        }else{
        LL a=mod_inverse(2,k);
        //cout<<a<<endl;
        sum=(((((nn%k)*(nn%k))%k+(nn*3)%k)%k)*a)%k;
        //cout<<sum<<endl;
        Min25::fff();
        sum=(sum-4+Min25::solve(nn+1))%k;
        printf("%lld\n",sum%k);
        }
    }
    return 0;
}*/
int main()
{
    int n;
    scanf("%d",&n);
    printf("%d\n",Min25::solve(n));
}

Min25筛求1-n内的素数和的更多相关文章

  1. 问题 1084: 用筛法求之N内的素数。

    #include <iostream> #include <cstdio> #include <cstring> #include <string> # ...

  2. [总结] min-25筛

    再不写总结我又会忘掉啊啊啊啊啊啊啊啊啊 这个\(min-25\)筛主要用来求一个积性函数的前缀和,就像这样\[\sum_{i=1}^n f(i)\] 不过这个积性函数要满足两个条件:质数\(p\)的函 ...

  3. loj#6235. 区间素数个数(min25筛)

    题意 题目链接 Sol min25筛的板子题,直接筛出\(g(N, \infty)\)即可 筛的时候有很多trick,比如只存\(\frac{N}{x}\)的值,第二维可以滚动数组滚动掉 #inclu ...

  4. hdu6607 min25筛+杜教筛+伯努利数求k次方前缀和

    推导过程类似https://www.cnblogs.com/acjiumeng/p/9742073.html 前面部分min25筛,后面部分杜教筛,预处理min25筛需要伯努利数 //#pragma ...

  5. BZOJ-5244 最大真因数(min25筛)

    题意:一个数的真因数指不包括其本身的所有因数,给定L,R,求这个区间的所有数的最大真因数之和. 思路:min25筛可以求出所有最小因子为p的数的个数,有可以求出最小因子为p的所有数之和. 那么此题就是 ...

  6. 「学习笔记」Min25筛

    「学习笔记」Min25筛 前言 周指导今天模拟赛五分钟秒第一题,十分钟说第二题是 \(\text{Min25}​\) 筛板子题,要不是第三题出题人数据范围给错了,周指导十五分钟就 \(\text{AK ...

  7. min25筛学习总结

    前言 杜教筛学了,顺便把min25筛也学了吧= =刚好多校也有一道题需要补. 下面推荐几篇博客,我之后写一点自己的理解就是了. 传送门1 传送门2 传送门3 这几篇写得都还是挺好的,接下来我就写下自己 ...

  8. CodeForces - 83D:Numbers (数学&递归 - min25筛 )

    pro:给定三个整数L,R,P求[L,R]区间的整数有多少个是以P为最小因子的.L,R,P<2e9; sol: 一: 比较快的做法是,用函数的思想递归. 用solve(N,P)表示求1到N有多少 ...

  9. Min25筛

    Min25筛 我是沙雕... 从yyb博客蒯的 要求:\(\sum_{i=1}^nF(x)\) \(F(x)\)是积性函数. \(Min25\)筛能用的前提:质数处的\(f(p)\)值是关于\(p\) ...

随机推荐

  1. Bootstrap页头

    页头组件能够为 h1 标签增加适当的空间,并且与页面的其他部分形成一定的分隔.它支持 h1 标签内内嵌 small 元素的默认效果,还支持大部分其他组件(需要增加一些额外的样式). <div c ...

  2. μC/OS-III---I笔记8---事件标志

    当任务需要同步时可以使用信号量.A任务给B任务发送消息后B任务才能继续运行.如果需要A任务给任务B传递数据的时候就可以采用消息队列.但对于繁杂任务的同步,比如多个时间发生以后执行一个事件,或者是C任务 ...

  3. cnblogs & 502 Bad Gateway

    cnblogs & 502 Bad Gateway 博客园 502 Bad Gateway 服务器发生了一些错误,请联系 contact@cnblogs.com 可以查看,不可以编辑 HTTP ...

  4. js 动态构建style

    使用创建style的方式 btn.addEventListener("click", async () => { const ns = document.createElem ...

  5. DBA 的效率加速器——CloudQuery v1.3.2 上线!

    嘿,兄弟,我们好久不见,你在哪里 嘿,朋友,如果真的是你,请打声招呼 我说好久不见,你去哪里 你却对我说,我去江湖 我去看 CloudQuery v1.3.2,看看新增了哪些好用的小功能! 一.自动/ ...

  6. JavaScript数据类型判断的四种方法

    码文不易啊,转载请带上本文链接呀,感谢感谢 https://www.cnblogs.com/echoyya/p/14416375.html 本文分享了JavaScript类型判断的四种方法:typeo ...

  7. spring学习路径

    1.https://zhuanlan.zhihu.com/p/72581899 spring 要点记录: (1)Web服务器的作用说穿了就是:将某个主机上的资源映射为一个URL供外界访问. (2)通过 ...

  8. FTPClient类的API

    org.apache.commons.NET.ftp Class FTPClient类FTPClient java.lang.Object java.lang.Object继承 org.apache. ...

  9. Mybatis注解开发之@CacheNamespace:实现注解二级缓存的使用

    MyBatis二级缓存使用: 官方建议在service使用缓存,但是你也可以直接在mapper层缓存,这里的二级缓存就是直接在Mapper层进行缓存操作 Mybatis的二级缓存实现也十分简单,只要在 ...

  10. Centos8.2安装Mongodb4.4.2(社区版)

    1:下载 wget https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel80-4.4.2.tgz 官网地址: 2:解压 tar -zxv ...