1. 用法

1.1 定义一个安全的list集合

public class LockDemo  {
ArrayList<Integer> arrayList = new ArrayList<>();//定义一个集合
// 定义读锁
ReentrantReadWriteLock.ReadLock readLock = new ReentrantReadWriteLock(true).readLock();
// 定义写锁
ReentrantReadWriteLock.WriteLock writeLock = new ReentrantReadWriteLock(true).writeLock(); public void addEle(Integer ele) {
writeLock.lock(); // 获取写锁
arrayList.add(ele);
writeLock.unlock(); // 释放写锁
}
public Integer getEle(Integer index) {
try{
readLock.lock(); // 获取读锁
Integer res = arrayList.get(index);
return res;
} finally{
readLock.unlock();// 释放读锁
}
}
}

1.2 Sync 源码中的属性与方法在上一篇文章中已经讲过了

  1. 获取写锁源码分析

ReentrantReadWriteLock中的lock方法

public void lock() {
sync.acquire(1);
}

AbstractQueuedSynchronizer中的acquire方法

public final void acquire(int arg) {
// 获取锁失败则进入阻塞队列
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}

acquireQueued(addWaiter(Node.EXCLUSIVE), arg))****,中的acquireQueued方法和addWaiter方法在前面的文章中都已经进行了详细的解释说明。

ReentrantReadWriteLock中的tryAcquire方法

protected final boolean tryAcquire(int acquires) {
// 获取当前线程
Thread current = Thread.currentThread();
// 获取状态
int c = getState();
// 计算写线程数量就是独占锁的可从入数量
int w = exclusiveCount(c);
// 当前同步状态state != 0,说明已经有其他线程获取了读锁或写锁
if (c != 0) {
// 当前state不为0,此时:如果写锁状态为0说明读锁此时被占用返回false;
// 如果写锁状态不为0且写锁没有被当前线程持有返回false
if (w == 0 || current != getExclusiveOwnerThread())
return false;
// 判断同一线程获取写锁是否超过最大次数(65535),支持可重入
if (w + exclusiveCount(acquires) > MAX_COUNT)
throw new Error("Maximum lock count exceeded");
//更新状态
//此时当前线程已持有写锁,现在是重入,所以只需要修改锁的数量即可
setState(c + acquires);
return true;
}
//到这里说明此时c=0,读锁和写锁都没有被获取
//writerShouldBlock表示是否阻塞
if (writerShouldBlock() ||
!compareAndSetState(c, c + acquires))
return false;
// 设置锁为当前线程所有
setExclusiveOwnerThread(current);
return true;
}
static final class FairSync extends Sync {
// 写锁是否应该被阻塞
final boolean writerShouldBlock() {
return hasQueuedPredecessors();
}
}
  1. 获取写锁流程图

3.1 流程图获取写锁过程

3.2 流程图获取写锁过程解析

写锁的获取过程如下:

  1. 首先获取c、w。c表示当前锁状态;w表示写线程数量。然后判断同步状态state是否为0。如果state!=0,说明已经有其他线程获取了读锁或写锁。
  2. 如果锁状态不为零(c != 0),而写锁的状态为0(w = 0),说明读锁此时被其他线程占用,所以当前线程不能获取写锁,自然返回false。或者锁状态不为零,而写锁的状态也不为0,但是获取写锁的线程不是当前线程,则当前线程也不能获取写锁。
  3. 判断当前线程获取写锁是否超过最大次数,若超过,抛异常,反之更新同步状态(此时当前线程已获取写锁,更新是线程安全的),返回true。
  4. 如果state为0,此时读锁或写锁都没有被获取,判断是否需要阻塞(公平和非公平方式实现不同),在非公平策略下总是不会被阻塞,在公平策略下会进行判断(判断同步队列中是否有等待时间更长的线程,若存在,则需要被阻塞,否则,无需阻塞),如果不需要阻塞,则CAS更新同步状态,若CAS成功则返回true,失败则说明锁被别的线程抢去了,返回false。如果需要阻塞则也返回false。
  5. 成功获取写锁后,将当前线程设置为占有写锁的线程,返回true。
  6. 获取锁失败的话,将当前线程进行放入阻塞队列中。
  7. 释放写锁源码分析

ReentrantReadWriteLock中的unlock方法

public void unlock() {
sync.release(1);
}

AbstractQueuedSynchronizer中的release方法

public final boolean release(int arg) {
// 如果返回true 那么释放成功了
if (tryRelease(arg)) {
Node h = head;
// 如果头部不为空,并且头节点的waitStatus是唤醒状态那么唤醒后继线程
if (h != null && h.waitStatus != 0)
// 唤醒后继线程
unparkSuccessor(h);
return true;
}
return false;
}

ReentrantReadWriteLock中tryRelease方法

protected final boolean tryRelease(int releases) {
// 若锁的持有者不是当前线程,抛出异常
if (!isHeldExclusively())
// 非法的监控器异常
throw new IllegalMonitorStateException();
// 计算写锁的新线程数
int nextc = getState() - releases;
// 如果独占模式重入数为0了,说明独占模式被释放
boolean free = exclusiveCount(nextc) == 0;
if (free)
// 设置独占线程为空
setExclusiveOwnerThread(null);
// 设置写锁的新线程数
// 不管独占模式是否被释放,更新独占重入数
setState(nextc);
return free;
}
protected final boolean isHeldExclusively() {
// 若当前线程是当前锁的持有线程那么返回true
return getExclusiveOwnerThread() == Thread.currentThread();
}
  1. 释放写锁流程图

5.1 流程图释放过程

5.2 流程图释放过程解析

写锁的释放过程:

  1. 首先查看当前线程是否为写锁的持有者,如果不是抛出异常。然后检查释放后写锁的线程数是否为0,如果为0则表示写锁空闲了,释放锁资源将锁的持有线程设置为null,否则释放仅仅只是一次重入锁而已,并不能将写锁的线程清空。
  2. 说明:此方法用于释放写锁资源,首先会判断该线程是否为独占线程,若不为独占线程,则抛出异常,否则,计算释放资源后的写锁的数量,若为0,表示成功释放,资源不将被占用,否则,表示资源还被占用。
  3. 总结

6.1 state 解析

private volatile int state;

int 类型占有 4个字节一个字节8位,所以 state 一个 32 位,高 16 位 代表读锁 低 16 位代表 写锁。

// 0x0000FFFF 16 进制
// 1111111111111111 2 进制
// 65535 10 进制
static final int SHARED_SHIFT = 16;
static final int SHARED_UNIT = (1 << SHARED_SHIFT); // 65536
static final int MAX_COUNT = (1 << SHARED_SHIFT) - 1; //65535
// 1111111111111111
static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1; // 65535
// 1111111111111111

如果此时同步状态位 c 那么获取写状态 c & EXCLUSIVE_MASK

如果此时同步状态位 c 那么获取读状态 c >>>16 无符号补0,右移16位

6.2 注意

以上便是ReentrantReadWriteLock中写锁的分析,下一篇文章将是Condition的分析,如有错误之处,帮忙指出及时更正,谢谢,如果喜欢谢谢点赞加收藏加转发(转发注明出处谢谢!!!)

AQS之ReentrantReadWriteLock写锁的更多相关文章

  1. AQS之ReentrantReadWriteLock精讲分析上篇

    1.用法 1.1 定义一个安全的list集合 public class LockDemo { ArrayList<Integer> arrayList = new ArrayList< ...

  2. 沉淀再出发:关于java中的AQS理解

    沉淀再出发:关于java中的AQS理解 一.前言 在java中有很多锁结构都继承自AQS(AbstractQueuedSynchronizer)这个抽象类如果我们仔细了解可以发现AQS的作用是非常大的 ...

  3. Java并发(8)- 读写锁中的性能之王:StampedLock

    在上一篇<你真的懂ReentrantReadWriteLock吗?>中我给大家留了一个引子,一个更高效同时可以避免写饥饿的读写锁---StampedLock.StampedLock实现了不 ...

  4. 一文搞懂AQS及其组件的核心原理

    @ 目录 前言 AbstractQueuedSynchronizer Lock ReentrantLock 加锁 非公平锁/公平锁 lock tryAcquire addWaiter acquireQ ...

  5. ReentrantReadWriteLock源码

    @SuppressWarnings("restriction") public class ReentrantReadWriteLock1 implements ReadWrite ...

  6. ReentrantReadWriteLock源码分析

    代码在后面 读锁 = 共享锁 读锁写锁,公用一个Sync AQS state. 写锁是排他的,看到有人获取锁,他不会去获取,他获取了锁,别人也不会进来获取锁. 写锁的获取跟ReentarntLock一 ...

  7. 源码分析:同步基础框架——AbstractQueuedSynchronizer(AQS)

    简介 AQS 全称是 AbstractQueuedSynchronizer,位于java.util.concurrent.locks 包下面,AQS 提供了一个基于FIFO的队列和维护了一个状态sta ...

  8. Lock锁子类了解一下

    前言 回顾前面: 多线程三分钟就可以入个门了! Thread源码剖析 多线程基础必要知识点!看了学习多线程事半功倍 Java锁机制了解一下 AQS简简单单过一遍 只有光头才能变强! 上一篇已经将Loc ...

  9. Java并发编程原理与实战三十九:JDK8新增锁StampedLock详解

    1.StampedLock是做什么的? ----->它是ReentrantReadWriteLock 的增强版,是为了解决ReentrantReadWriteLock的一些不足.   2.Ree ...

随机推荐

  1. 图解Janusgraph系列-并发安全:锁机制(本地锁+分布式锁)分析

    图解Janusgraph系列-并发安全:锁机制(本地锁+分布式锁)分析 大家好,我是洋仔,JanusGraph图解系列文章,实时更新~ 图数据库文章总目录: 整理所有图相关文章,请移步(超链):图数据 ...

  2. matplotlib的学习4-设置坐标轴

    import matplotlib.pyplot as plt import numpy as np x = np.linspace(-3, 3, 50) y1 = 2*x + 1 y2 = x**2 ...

  3. php 文件上传错误

    假设文件上传字段的名称img,则: $_FILES['img']['error']有以下几种类型 1.UPLOAD_ERR_OK 其值为 0,没有错误发生,文件上传成功. 2.UPLOAD_ERR_I ...

  4. Python 学习笔记(下)

    Python 学习笔记(下) 这份笔记是我在系统地学习python时记录的,它不能算是一份完整的参考,但里面大都是我觉得比较重要的地方. 目录 Python 学习笔记(下) 函数设计与使用 形参与实参 ...

  5. @Transient 注解

    使用 @Transient 表示该属性并非是一个要映射到数据库表中的字段,只是起辅助作用.ORM框架将会忽略该属性

  6. Javaweb前台界面代码复用总结

    servlet声明定义message信息传给前天界面判断输出message: if(booknamelist.size()==0) { message="根据书名查询没有结果!"; ...

  7. Scrum转型(二) Scrum的角色

    1.1 ScurmMaster 作为Scrum流程的捍卫者和布道者,ScrumMaster在Scrum团队中起到至关重要的作用,他们确保团队使用正确的流程,确保团队正确地召开各种会议,他们训练团队的敏 ...

  8. redis加锁的几种实现

    redis加锁的几种实现 2017/09/21 1. redis加锁分类 redis能用的的加锁命令分表是INCR.SETNX.SET 2. 第一种锁命令INCR 这种加锁的思路是, key 不存在, ...

  9. Modbus java slave app

    文章实现 Modbus slave app , 用 serial rtu 传输, 代码只实现监听功能(本人测试可行), 要实现写功能,可研究一下代码中 updateProcessImage 方法.完整 ...

  10. 漫画|web的主要安全问题

    在此主要说现在市面上存在的4个比较多的安全问题 一.钓鱼 钓鱼: 比较有诱惑性的标题 仿冒真实网站 骗取用户账号 骗取用户资料 二.篡改页面 有一大部分被黑的网站中会有关键字 (在被黑的网站中,用的最 ...