洛谷 P4042 [AHOI2014/JSOI2014]骑士游戏
题意
有\(n\)个怪物,可以消耗\(k\)的代价消灭一个怪物或者消耗\(s\)的代价将它变成另外一个或多个新的怪物,求消灭怪物$的最小代价
思路
\(DP\)+最短路
这几天做的第一道自己能\(yy\)出来的题……
看起来像是个\(\texttt{DP}\),认真思考一会儿也不难想到可以设计如下状态
设\(f[i]\)为消灭\(i\)所需的最小代价,那么有
\]
其中\(to\)表示\(i\)点的后继
因为\(f\)的转移之间相互干涉,所以用最短路处理
先建双向边,方便之后转移,然后用\(\texttt{SPFA}\)(它死了求"多源"最短路就好了
因为不知道一开始应该打哪个怪物,所以干脆全都入队、全部更新就好了
\(ps:\)两年\(\text{OI}\)一场空,不开\(long\ long\)见祖宗
代码
/*
Author:Loceaner
*/
#include <queue>
#include <cmath>
#include <vector>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define int long long
using namespace std;
const int A = 2e5 + 11;
const int B = 1e6 + 11;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;
inline int read() {
char c = getchar(); int x = 0, f = 1;
for ( ; !isdigit(c); c = getchar()) if (c == '-') f = -1;
for ( ; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
return x * f;
}
queue <int> Q;
vector <int> v1[A], v2[A];
int n, m, ord[A], mag[A]/*题目中所给的s[i],k[i]*/, vis[A];
inline void ZDL() {
for (int i = 1; i <= n; i++) Q.push(i), vis[i] = 1;
while (!Q.empty()) {
int x = Q.front(); Q.pop(), vis[x] = 0;
int res = ord[x];
for (int i = 0; i < (int)v1[x].size(); i++) res += mag[v1[x][i]];
if (res < mag[x]) {
mag[x] = res;
for (int i = 0; i < (int)v2[x].size(); i++)
if (!vis[v2[x][i]]) Q.push(v2[x][i]), vis[v2[x][i]] = 1;
}
}
}
signed main() {
n = read();
for (int i = 1, k; i <= n; i++) {
ord[i] = read(), mag[i] = read(), k = read();
while (k--) {
int x = read();
v1[i].push_back(x), v2[x].push_back(i);
}
}
ZDL();
cout << mag[1] << '\n';
return 0;
}
洛谷 P4042 [AHOI2014/JSOI2014]骑士游戏的更多相关文章
- p4042 [AHOI2014/JSOI2014]骑士游戏
传送门 分析 我们发现对于一个怪物要不然用魔法代价使其无需考虑后续点要么用普通攻击使其转移到他所连的所有点上且所有边大于0 所以我们可以先将一个点的最优代价设为魔法攻击的代价 之后我们倒着跑spfa求 ...
- LUOGU P4042 [AHOI2014/JSOI2014]骑士游戏 (spfa+dp)
传送门 解题思路 首先设\(f[x]\)表示消灭\(x\)的最小花费,那么转移方程就是 \(f[x]=min(f[x],\sum f[son[x]] +s[x])\),如果这个转移是一个有向无环图,那 ...
- 【BZOJ3875】[Ahoi2014&Jsoi2014]骑士游戏 SPFA优化DP
[BZOJ3875][Ahoi2014&Jsoi2014]骑士游戏 Description [故事背景] 长期的宅男生活中,JYY又挖掘出了一款RPG游戏.在这个游戏中JYY会扮演一个英勇的 ...
- 洛谷$P4040\ [AHOI2014/JSOI2014]$宅男计划 贪心
正解:三分+贪心 解题报告: 传送门$QwQ$ 其实很久以前的寒假就考过了,,,但那时候$gql$没有好好落实,就只写了个二分,并没有二分套三分,就只拿到了$70pts$ #include <b ...
- 2019.01.22 bzoj3875: [Ahoi2014&Jsoi2014]骑士游戏(spfa+dp)
传送门 题意简述:nnn个怪物,对于编号为iii的怪物可以选择用aia_iai代价将其分裂成另外的bib_ibi个怪物或者用cic_ici代价直接消灭它,现在问消灭编号为1的怪物用的最小代价. ...
- BZOJ3875 AHOI2014/JSOI2014骑士游戏(动态规划)
容易想到设f[i]为杀死i号怪物所消耗的最小体力值,由后继节点更新.然而这显然是有后效性的,正常的dp没法做. 虽然spfa已经死了,但确实还是挺有意思的.只需要用spfa来更新dp值就可以了.dij ...
- [BZOJ] 3875: [Ahoi2014&Jsoi2014]骑士游戏
设\(f[x]\)为彻底杀死\(x\)号怪兽的代价 有转移方程 \[ f[x]=min\{k[x],s[x]+\sum f[v]\} \] 其中\(v\)是\(x\)通过普通攻击分裂出的小怪兽 这个东 ...
- food(洛谷P4040 [AHOI2014/JSOI2014]宅男计划)
题目在这里 题目描述 外卖店一共有N种食物,分别有1到N编号.第i种食物有固定的价钱Pi和保质期Si.第i种食物会在Si天后过期.JYY是不会吃过期食物的. 比如JYY如果今天点了一份保质期为1天的食 ...
- bzoj 3875: [Ahoi2014&Jsoi2014]骑士游戏【dp+spfa】
设f[i]为杀死i的最小代价,显然\( f[i]=min(k[i],s[i]+\sum f[to]) \) 但是这个东西有后效性,所以我们使用spfa来做,具体就是每更新一个f[i],就把能被它更新的 ...
随机推荐
- 彻底搞懂 etcd 系列文章(二):etcd 的多种安装姿势
0 专辑概述 etcd 是云原生架构中重要的基础组件,由 CNCF 孵化托管.etcd 在微服务和 Kubernates 集群中不仅可以作为服务注册与发现,还可以作为 key-value 存储的中间件 ...
- 栈 & 队列
栈 先进者后出,后进者先出,LIFO,典型的"栈"结构 从栈的操作特性上来看,栈是一种"操作受限"的线性表,只允许在一段插入和删除数据. 在功能上来说,数组和链 ...
- css3中的skew(skewX,skewY)用法
这是html代码 <!DOCTYPE html> <html> <head> <meta charset="utf-8"> < ...
- ubuntu12.04 跳过grub选择
1.修改/etc/grub.d/00_head文件. set timeout=-1 修改成 set timeout = ${GRUB_RECORDFAIL_TIMEOUT:--1} 2.修改/etc/ ...
- 字符串相同ID竟然不同!!!
- 【LGR-072】回首过去
题目 点这里看题目. 分析 可以发现,符合条件的分数约分后,其分母必须为\(2^m5^k\).因此,原分数一定可以表示为: \[\frac{XY}{2^m5^kX} \] 其中\((10, ...
- @atcoder - ARC092F@ Two Faced Edges
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给出一个有向图,对每条边都做一次询问: 翻转这条边后,对原图的强 ...
- VMWare虚拟机开启时显示模块“Disk”启动失败的解决方案
找到虚拟机所在的目录, 将 .vmx文件打开 将文件vmci0.present = "TRUE"改为 vmci0.present = "FALSE" 删除以.l ...
- PuTTY通过SSH连接上Ubuntu20.04
在PuTTY中连接到Ubuntu20.04大致需要几个步骤(不一定对应文本中的序号):1) 安装opensh-server (Ubuntu安装好之后 ,一般openssh-client自动已经安装好) ...
- TensorFlow从0到1之浅谈感知机与神经网络(18)
最近十年以来,神经网络一直处于机器学习研究和应用的前沿.深度神经网络(DNN).迁移学习以及计算高效的图形处理器(GPU)的普及使得图像识别.语音识别甚至文本生成领域取得了重大进展. 神经网络受人类大 ...