一、reduce

1.1 Java

 private static void reduce() {
//创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("reduce")
.setMaster("local");
//创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
//构造集合
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
//并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
//使用reduce操作对集合中的数字进行累加
//reduce操作的原理:
//将第一个和第二个元素,传入call()方法,进行计算,会获取一个结果
//接着将该结果与下一个元素传入call()方法,进行计算
//以此类推
//reduce操作的本质:就是聚合,将多个元素聚合成一个元素
int sum = numberRDD.reduce(new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
}
});
System.out.println(sum);
//关闭JavaSparkContext
sc.close();
}

1.2 Scala

def reduce(): Unit = {
val conf = new SparkConf().setAppName("reduce").setMaster("local")
val sc = new SparkContext(conf)
val numbersArray = Array(1, 2, 3, 4, 5, 6, 7, 8)
val numberRDD = sc.parallelize(numbersArray, 1)
val numbers = numberRDD.reduce(_ + _)
println(numbers)
}

二、collect

2.1 Java

private static void collect() {
//创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("collect")
.setMaster("local");
//创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
//构造集合
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
//并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
//使用map操作将集合中所有数字乘以2
JavaRDD<Integer> doubleNumbers = numberRDD.map(new Function<Integer, Integer>() {
@Override
public Integer call(Integer v1) throws Exception {
return v1 * 2;
}
});
//不用foreach action操作,在远程集群上遍历RDD中的元素
//使用collect操作,将分布在远程集群上的doubleNumber RDD的数据拉取到本地
//这种方式,一般不建议使用,因为如果RDD中的数据量笔记大,比如过万条
//性能会比较差,因为要从远程走大量的网络传输,将数据获取到本地
//此外,还可能在RDD中数据量特别大的情况下,发生oom异常,内存溢出
//因此,通常还是使用foreach action操作,来对最终的元素进行处理
List<Integer> doubleNumberList = doubleNumbers.collect();
for (Integer num : doubleNumberList) {
System.out.println(num);
}
//关闭JavaSparkContext
sc.close();
}

2.2 Scala

def collect(): Unit = {
val conf = new SparkConf().setAppName("collect").setMaster("local")
val sc = new SparkContext(conf)
val numbersArray = Array(1, 2, 3, 4, 5, 6, 7, 8)
val numberRDD = sc.parallelize(numbersArray, 1)
val numbers = numberRDD.map(num => num * 2)
val doubleNumberArray = numbers.collect()
for (num <- doubleNumberArray) {
println(num)
}
}

三、count

3.1 Java

private static void count() {
//创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("count")
.setMaster("local");
//创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
//构造集合
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
//并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
//对RDD使用count操作,统计它有多少个元素
long count = numberRDD.count();
System.out.println(count);
//关闭JavaSparkContext
sc.close();
}

3.2 Scala

def count(): Unit = {
val conf = new SparkConf().setAppName("count").setMaster("local")
val sc = new SparkContext(conf)
val numbersArray = Array(1, 2, 3, 4, 5, 6, 7, 8)
val numberRDD = sc.parallelize(numbersArray, 1)
val count = numberRDD.count()
println(count)
}

四、take

4.1 Java

private static void take() {
//创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("take")
.setMaster("local");
//创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
//构造集合
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
//并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
//对RDD使用take操作
//take与collect类似,从远程集群上,获取RDD数据
//collect是获取RDD的所有数据,take知识获取前n个数据
List<Integer> top3Numbers = numberRDD.take(3);
for (Integer num : top3Numbers) {
System.out.println(num);
}
//关闭JavaSparkContext
sc.close();
}

4.2 Scala

def take(): Unit = {
val conf = new SparkConf().setAppName("take").setMaster("local")
val sc = new SparkContext(conf)
val numbersArray = Array(1, 2, 3, 4, 5, 6, 7, 8)
val numberRDD = sc.parallelize(numbersArray, 1)
val doubleNumberArray = numberRDD.take(3)
for (num <- doubleNumberArray) {
println(num)
}
}

五、saveAsTextFile

5.1 Java

private static void saveAsTextFile() {
//创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("saveAsTextFile")
.setMaster("local");
//创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
//构造集合
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
//并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
//使用map操作将集合中所有数字乘以2
JavaRDD<Integer> doubleNumbers = numberRDD.map(new Function<Integer, Integer>() {
@Override
public Integer call(Integer v1) throws Exception {
return v1 * 2;
}
});
//直接将RDD中的数据,保存在文件中
doubleNumbers.saveAsTextFile("");
//关闭JavaSparkContext
sc.close();
}

六、countByKey

6.1 Java

private static void countByKey() {
//创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("countByKey")
.setMaster("local");
//创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
//构造集合
List<Tuple2<String, String>> scoresList = Arrays.asList(
new Tuple2<>("class1", "tom"),
new Tuple2<>("class2", "jack"),
new Tuple2<>("class1", "leo"),
new Tuple2<>("class2", "marry"));
//并行化集合,创建JavaPairRDD
JavaPairRDD<String, String> students = sc.<String, String>parallelizePairs(scoresList);
//对RDD应用countByKey操作,统计每个班级的学生人数,就是统计每个key对应的元素个数
//countByKey返回的类型,直接就是Map<String,Object>
Map<String, Long> studentCounts = students.countByKey();
for (Map.Entry<String, Long> studentCount : studentCounts.entrySet()) {
System.out.println(studentCount.getKey() + ":" + studentCount.getValue());
}
//关闭JavaSparkContext
sc.close();
}

6.2 Scala

def countByKey(): Unit = {
val conf = new SparkConf().setAppName("countByKey").setMaster("local")
val sc = new SparkContext(conf)
val studentList = Array(new Tuple2[String, String]("class1", "aaa"),
new Tuple2[String, String]("class2", "mack"),
new Tuple2[String, String]("class1", "tom"),
new Tuple2[String, String]("class2", "pos"))
val scores = sc.parallelize(studentList, 1)
val students = scores.countByKey()
println(students)
}

七、foreach

八、main函数

8.1 Java

public static void main(String[] args) {
//reduce();
//collect();
//count();
//take();
//saveAsTextFile();
countByKey();
}

8.2 Scala

  def main(args: Array[String]): Unit = {
//reduce()
//collect()
//count()
//take()
countByKey()
}

Spark练习之action操作开发的更多相关文章

  1. Spark练习之Transformation操作开发

    Spark练习之Transformation操作开发 一.map:将集合中的每个元素乘以2 1.1 Java 1.2 Scala 二.filter:过滤出集合中的偶数 2.1 Java 2.2 Sca ...

  2. spark transformation与action操作函数

    一.Transformation map(func) 返回一个新的分布式数据集,由每个原元素经过函数处理后的新元素组成 filter(func) 返回一个新的数据集,经过fun函数处理后返回值为tru ...

  3. 06、action操作开发实战

    1.reduce: 2.collect: 3.count: 4.take: 5.saveAsTextFile: 6.countByKey: 7.foreach: package sparkcore.j ...

  4. Spark常用函数讲解之Action操作

    摘要: RDD:弹性分布式数据集,是一种特殊集合 ‚ 支持多种来源 ‚ 有容错机制 ‚ 可以被缓存 ‚ 支持并行操作,一个RDD代表一个分区里的数据集RDD有两种操作算子:         Trans ...

  5. Spark RDD概念学习系列之Pair RDD的action操作

    不多说,直接上干货! Pair RDD的action操作 所有基础RDD 支持的行动操作也都在pair RDD 上可用

  6. Spark RDD概念学习系列之action操作

    不多说,直接上干货! action操作  

  7. spark 学习_rdd常用操作

    [spark API 函数讲解 详细 ]https://www.iteblog.com/archives/1399#reduceByKey [重要API接口,全面 ] http://spark.apa ...

  8. 【转】Spark Streaming和Kafka整合开发指南

    基于Receivers的方法 这个方法使用了Receivers来接收数据.Receivers的实现使用到Kafka高层次的消费者API.对于所有的Receivers,接收到的数据将会保存在Spark ...

  9. Spark Streaming中的操作函数分析

    根据Spark官方文档中的描述,在Spark Streaming应用中,一个DStream对象可以调用多种操作,主要分为以下几类 Transformations Window Operations J ...

随机推荐

  1. jQuery EasyUI学习二

    1.   课程介绍 1.  Datagrid组件(掌握) 2.  Dialog.form组件(掌握) 3. Layout.Tabs;(掌握) Datagrid组件 2.1.  部署运行pss启动无错 ...

  2. AOP的姿势之 简化混用 MemoryCache 和 DistributedCache 的方式

    0. 前言 之前写了几篇文章介绍了一些AOP的知识, 但是还没有亮出来AOP的姿势, 也许姿势漂亮一点, 大家会对AOP有点兴趣 内容大致会分为如下几篇:(毕竟人懒,一下子写完太累了,没有动力) AO ...

  3. eclipse的相关操作和使用快捷键

    修改字体Window->preferences->General->Appearance->ColorsandFonts ->Basic->text Font 在e ...

  4. 漫画|web的主要安全问题

    在此主要说现在市面上存在的4个比较多的安全问题 一.钓鱼 钓鱼: 比较有诱惑性的标题 仿冒真实网站 骗取用户账号 骗取用户资料 二.篡改页面 有一大部分被黑的网站中会有关键字 (在被黑的网站中,用的最 ...

  5. Linux LVM Logical Volume Management 逻辑卷的管理

    博主是一个数据库DBA,但是一般来说,是不做linux服务器LVM 逻辑卷的创建.扩容和减容操作的,基本上有系统管理员操作,一是各司其职,专业的事专业的人做,二是做多了你的责任也多了,哈哈! 但是li ...

  6. 安卓mbn文件丢失,无法搜索移动信号,工程模式mbn乱改,不用QPST烧录怎样恢复?超简单!

    没有root,工程模式乱改mbn配置选项,导致mbn配置丢失,无法搜索移动网络. 重启若干次改配置都无效,清空网络设置无效,恢复出厂无效,recovery三清无效, 不太想拆机root麻烦,QPST配 ...

  7. idea启动build过慢

    原文链接http://zhhll.icu/2020/04/17/idea/idea%E4%B9%8B%E7%BC%96%E8%AF%91%E9%97%AE%E9%A2%98/ 之前使用idea的时候每 ...

  8. WPF时间长度自定义选择控件TimeSpanBox

    以下控件采用https://www.cnblogs.com/cssmystyle/archive/2011/01/17/1937361.html部分代码 以下控件采用https://www.cnblo ...

  9. jquery表格插件Datatables使用、快速上手

    Datatables使用 一.简介 官网:https://datatables.net/ 中文官网:http://datatables.club/ Datatables是一款jquery表格插件.它是 ...

  10. 剑指offer 面试题9:用两个栈实现队列

    题目描述 用两个栈来实现一个队列,完成队列的Push和Pop操作. 队列中的元素为int类型. 使用栈实现队列的下列操作:push(x) -- 将一个元素放入队列的尾部.pop() -- 从队列首部移 ...