论文提出从IoU指标延伸来的PIoU损失函数,能够有效地提高倾斜目标检测场景下的旋转角度预测和IoU效果,对anchor-based方法和anchor-free方法均适用。另外论文提供了Retail50K数据集,能够很好地用于评估倾斜目标检测算法的性能



来源:晓飞的算法工程笔记 公众号

论文: PIoU Loss: Towards Accurate Oriented Object Detection in Complex Environments

Introduction


  当前的目标检测方法由于BB(bounding boxes)的特性,对倾斜和密集物体的检测存在一定的局限性。为了解决这个问题,研究者扩展出了带旋转参数的OBB(oriented bounding boxes),即从BB($c_x,c_y,w,h$)扩展为OBB($c_x,c_y,w,h,\theta$),其中$\theta$旋转角度,这样OBB就能更紧凑地包围目标,可以更好地检测旋转和密集的物体。

  目前的OBB-based方法大多数在anchor-based架构上采用距离损失来优化上述的5个参数,并且在航空图片的目标检测上已经有一些应用。但其检测性能在更复杂的场景中依然存在局限性,主要原因在于距离损失更多地是优化旋转角度误差,而不是优化全局IoU,特别是对长条形物体很不敏感。如图a所示,两个IoU相差很大的情景下,距离损失的结果却是一样的。

  为了解决这个问题,论文提出PIoU(Pixels-IOU)损失来同时提高旋转角度和IoU的准确率。如图b所示,PIoU损失能直接反映物体间的IoU,但由于OBB间的相交区域可能是多边形,OBB的IoU比BB的IoU要难算得多,所以PIoU损失以逐像素判断的方式进行IoU计算并且是连续可微的。另外论文还提供了包含高长宽比倾斜目标的检测数据集Retail50K,方便OBB-based检测算法的研究。

  论文的贡献如下:

  • 提出新的损失函数PIoU损失,能够提升倾斜目标的检测效果。
  • 提供新的数据集Retail50K,可以更好的进行OBB-based算法的评估。
  • 通过实验证明PIoU损失的有效性,能够运用于anchor-based和anchor-free方法。

Pixels-IoU (PIoU) Loss


  对于OBB $b$($c_x, c_y, w,h,\theta$),理想的损失函数能够引导网络最大化IoU,降低$b$的错误率。为了到达这个目的,需要准确且高效地计算OBB间的IoU,论文采用了像素计数的方式来计算IoU。

  对于点$p_{ij}$和OBB $b$,根据其到中线的距离$dh_{i,j}$和中线交点到中点的距离$dw_{i,j}$来判断点是否在OBB内:

  定义$B_{b,b{'}}$为包围$b$和$b{'}$的最小正方形,可以通过判断$B_{b,b{'}}$中的所有像素来计算$b$和$b{'}$间的交集区域和并集区域:

  最后通过$S_{b\cap b^{'}}$除以$S_{b\cup b^{'}}$计算IoU,但公式1并不是连续可微函数,导致不能进行反向传播训练。为了解决这个问题,将公式1转换为两个核的乘积$F(p_{i,j}|b)$:

  其中$k$用于控制对目标像素$p_{i,j}$的敏感程度,由于公式9使用了相对位置信息(图a的点距离和三角形的角度),所以$S_{b\cap b^{'}}$和$S_{b\cup b^{'}}$均是对OBB的旋转角度和大小敏感的。

  如图b所示,$F(p_{i,j}|b)$是连续可微的,且与公式1类似。当$p_{i,j}$在$b$内时,$F(p_{i,j}|b)$接近于1,反之则接近于0。为此,$b$和$b^{'}$的交并集区域计算变为:

  为了降低公式11的计算量,简化为:

  基于公式10和公式12,PIoU的计算为:

  定义$M$为所有正样本对,PIoU损失的计算为:

  PIoU损失也可用于无交集的OBB,因为PIoU始终大于零,梯度依然可以计算,另外PIoU损失也可以用于正常的BB场景中。

Retail50K Dataset


  之前的大多数OBB数据集都是航空图片,少部分数据集对MSCOCO等数据集进行重新标注。据统计,航空图片数据集中大多数OBB的长宽比都在1:4内,而主流数据集则集中在1:1,不能够很好地评价OBB-based方法的性能。为此,论文提供了Retail50K数据集,由47000张不同的超市图片构成,标注对象为货架的层架边。数据集包含复杂的背景和高长宽比目标,并且具有实际使用意义。

Experiments


  不同$k$下对比实验。

  对比其它损失函数在OBB场景下的性能。

  对比其它损失函数在BB场景下的性能。

  Retail50K数据集上的性能对比。

  HRSC2016数据上的性能对比。

  DOTA数据上的性能对比。

  结果可视化对比。

Conclustion


  论文提出从IoU指标延伸来的PIoU损失函数,能够有效地提高倾斜目标检测场景下的旋转角度预测和IoU效果,对anchor-based方法和anchor-free方法均适用。从结果来看,PIoU损失的效果还是十分明显的。另外论文提供了Retail50K数据集,能够很好地用于评估倾斜目标检测算法的性能。





如果本文对你有帮助,麻烦点个赞或在看呗~

更多内容请关注 微信公众号【晓飞的算法工程笔记】

PIoU Loss:倾斜目标检测专用损失函数,公开超难倾斜目标数据集Retail50K | ECCV 2020 Spotlight的更多相关文章

  1. 腾讯推出超强少样本目标检测算法,公开千类少样本检测训练集FSOD | CVPR 2020

    论文提出了新的少样本目标检测算法,创新点包括Attention-RPN.多关系检测器以及对比训练策略,另外还构建了包含1000类的少样本检测数据集FSOD,在FSOD上训练得到的论文模型能够直接迁移到 ...

  2. 【目标检测实战】目标检测实战之一--手把手教你LMDB格式数据集制作!

    文章目录 1 目标检测简介 2 lmdb数据制作 2.1 VOC数据制作 2.2 lmdb文件生成 lmdb格式的数据是在使用caffe进行目标检测或分类时,使用的一种数据格式.这里我主要以目标检测为 ...

  3. 【目标检测】用Fast R-CNN训练自己的数据集超详细全过程

    目录: 一.环境准备 二.训练步骤 三.测试过程 四.计算mAP 寒假在家下载了Fast R-CNN的源码进行学习,于是使用自己的数据集对这个算法进行实验,下面介绍训练的全过程. 一.环境准备 我这里 ...

  4. [炼丹术]YOLOv5目标检测学习总结

    Yolov5目标检测训练模型学习总结 一.YOLOv5介绍 YOLOv5是一系列在 COCO 数据集上预训练的对象检测架构和模型,代表Ultralytics 对未来视觉 AI 方法的开源研究,结合了在 ...

  5. [目标检测]YOLO原理

    1 YOLO 创新点: 端到端训练及推断 + 改革区域建议框式目标检测框架 + 实时目标检测 1.1 创新点 (1) 改革了区域建议框式检测框架: RCNN系列均需要生成建议框,在建议框上进行分类与回 ...

  6. 第三十六节,目标检测之yolo源码解析

    在一个月前,我就已经介绍了yolo目标检测的原理,后来也把tensorflow实现代码仔细看了一遍.但是由于这个暑假事情比较大,就一直搁浅了下来,趁今天有时间,就把源码解析一下.关于yolo目标检测的 ...

  7. 目标检测算法之YOLOv1与v2

    YOLO:You Only Look Once(只需看一眼) 基于深度学习方法的一个特点就是实现端到端的检测,相对于其他目标检测与识别方法(如Fast R-CNN)将目标识别任务分成目标区域预测和类别 ...

  8. Domain Adaptive Faster R-CNN:经典域自适应目标检测算法,解决现实中痛点,代码开源 | CVPR2018

    论文从理论的角度出发,对目标检测的域自适应问题进行了深入的研究,基于H-divergence的对抗训练提出了DA Faster R-CNN,从图片级和实例级两种角度进行域对齐,并且加入一致性正则化来学 ...

  9. CVPR目标检测与实例分割算法解析:FCOS(2019),Mask R-CNN(2019),PolarMask(2020)

    CVPR目标检测与实例分割算法解析:FCOS(2019),Mask R-CNN(2019),PolarMask(2020)1. 目标检测:FCOS(CVPR 2019)目标检测算法FCOS(FCOS: ...

随机推荐

  1. 12、Decorator 装饰器 模式 装饰起来美美哒 结构型设计模式

    1.Decorator模式 装饰模式又名包装(Wrapper)模式.装饰模式以对客户端透明的方式扩展对象的功能,是继承关系的一个替代方案. 装饰器模式(Decorator Pattern)允许向一个现 ...

  2. SwaggerUI看烦了,IGeekFan.AspNetCore.Knife4jUI 帮你换个新皮肤

    背景 好像是上周四,看到微信群有人说java有轮子swagger-bootstrap-ui,而c#,就是找不到. 于是我一看,就说大话:"这个只是一套UI,他这个有开源地址么" 被 ...

  3. Flutter 容器(5) - SizedBox

    SizedBox: 两种用法:一是可用来设置两个widget之间的间距,二是可以用来限制子组件的大小. import 'package:flutter/material.dart'; class Au ...

  4. 剑指Offer——II平衡二叉树

    class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None # 这道题使用中序遍历加上 ...

  5. moonlight不显示鼠标指针

    多显示屏导致moonlight不显示鼠标指针, 使用的时候关闭其他显示屏,只使用一个显示屏,就可以正常显示了.

  6. Maven报错Missing artifact jdk.tools:jdk.tools:jar:1.7

    1.eclipse中Maven项目的pom文件报错: 2.解决方法: 直接在pom.xml中加上一个依赖项目: <dependency>      <groupId>jdk.t ...

  7. 欧几里得算法(gcd) 裴蜀定理 拓展欧几里得算法(exgcd)

    欧几里得算法 又称辗转相除法 迭代求两数 gcd 的做法 由 (a,b) = (a,ka+b) 的性质:gcd(a,b) = gcd(b,a mod b) int gcd(int a,int b){ ...

  8. unity探索者之socket传输protobuf字节流(四)

    版权声明:本文为原创文章,转载请声明http://www.cnblogs.com/unityExplorer/p/7027659.html 上篇已经把socket的传输说的差不多了,这篇主要是说说断线 ...

  9. java中Math的常用方法整理

    public class Demo{ public static void main(String args[]){ /** *Math.sqrt()//计算平方根 *Math.cbrt()//计算立 ...

  10. Jmeter 常用函数(3)- 详解 __RandomString

    如果你想查看更多 Jmeter 常用函数可以在这篇文章找找哦 https://www.cnblogs.com/poloyy/p/13291704.html 作用 根据指定的字符产生一个随机字符串 语法 ...