题目

题目链接:https://leetcode-cn.com/problems/zhong-jian-er-cha-shu-lcof/


初步题解

先放代码:

/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) { // TreeNode* re = nullptr;
if(preorder.empty()){
return nullptr;
}
//根节点
TreeNode* root = new TreeNode(preorder[0]);
// root->val = inorder[0]; vector<int> lPreorder,rPreorder;
vector<int> lInorder,rInorder;
int midIndex = 0; for(int i = 0; i<inorder.size() ; i++){
if(inorder[i]==preorder[0]){
midIndex = i;
break;
}
}
// 获取左右子树的结点数量
int leftSize = midIndex;
int rightSize = preorder.size() - midIndex - 1; // 分开赋值
for(int i=0 ; i<midIndex ; i++){
lInorder.push_back(inorder[i]);
// lPreorder[i]=preorder[i];
}
for(int i=midIndex+1 ; i<inorder.size() ; i++){
rInorder.push_back(inorder[i]);
// lPreorder[i-midIndex-1]=preorder[i];
} for(int i=1 ; i<leftSize+1 ; i++){
lPreorder.push_back(preorder[i]);
// lInorder[i-1] = inorder[i];
}
for(int i=leftSize+1 ; i<preorder.size() ; i++){
rPreorder.push_back(preorder[i]);
// rInorder[i-1] = inorder[i];
} //左子树
root->left = buildTree(lPreorder,lInorder);
//右子树
root->right = buildTree(rPreorder,rInorder); return root;
}
};

思路很简单,先序遍历时,根节点的值会被放在第一个。而中序遍历时,根节点的值刚好把左右子树全部的值分隔开,就是利用这一句话的思路做题。我们只要先按照先序遍历分隔开中序遍历为左子树和右子树的值,然后在分别对左右子树进行递归操作就可以了。

递归退出点的选择:返回的值是树的结点指针,也就是作为父节点的左右子结点来用。这样只要最后不满足条件时返回null就可以了。至于退出条件,就是传入的先序遍历(或后序遍历)所承载的数组为空就可以退出了。

但是这样做结果很慢:

而实际上比较快的只需要24ms,足足慢了10倍,必须要优化。

优化

存在两个优化点。第一个是每次都要搜索root节点在中序遍历中的位置,第二个是每次都要来回创建新的vector来存放中序遍历的左右子树再往下递归,这个创建vector并赋值的过程其实很耗时间。

  • 针对一个点,可以创建一个全局的map来避免每次都查找,不然每一次递归都要寻找根节点的位置。

  • 针对第二个点,选择传index,而不是重新赋值来做,这样节省了大量的时间。

优化后的代码

/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
map<int,int> inorder_map;
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
for(int i=0;i<inorder.size();i++){
// 方便一下找到大小为i的元素在哪个位置了,省去了遍历浪费的时间
inorder_map[inorder[i]]=i;
}
TreeNode* root = new TreeNode;
root = Recur_buildTree(preorder, inorder, 0, preorder.size()-1, 0, inorder.size()-1);
return root;
} TreeNode* Recur_buildTree(vector<int>& preorder, vector<int>& inorder, int pre_start, int pre_end, int in_start, int in_end){
if(pre_start > pre_end || in_start > in_end){
return nullptr;
}
//根节点
TreeNode* root = new TreeNode(preorder[pre_start]); int mid_index = inorder_map[preorder[pre_start]];
// 获取左子树的结点数量
int left_size = mid_index - in_start; //左子树
root->left = Recur_buildTree(preorder, inorder, pre_start + 1, pre_start + left_size, in_start, in_start + left_size -1);
//右子树
root->right = Recur_buildTree(preorder, inorder, pre_start + left_size + 1, pre_end, mid_index+1, in_end); return root;
}
};

优化后的速度:

剑指offer 07 & LeetCode 105 重建二叉树的更多相关文章

  1. 剑指Offer - 九度1385 - 重建二叉树

    剑指Offer - 九度1385 - 重建二叉树2013-11-23 23:53 题目描述: 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的 ...

  2. 剑指offer面试题6 重建二叉树(c)

  3. 剑指offer面试题6 重建二叉树(java)

    注:(1)java中树的构建 (2)构建子树时可以直接利用Arrays.copyOfRange(preorder, from, to),这个方法是左开右闭的 package com.xsf.SordF ...

  4. 剑指offer第二版-7.重建二叉树

    描述:输入某二叉树的前序遍历和中序遍历结果,重建该二叉树.假设前序遍历或中序遍历的结果中无重复的数字. 思路:前序遍历的第一个元素为根节点的值,据此将中序遍历数组拆分为左子树+root+右子树,前序遍 ...

  5. 《剑指Offer》面试题-重建二叉树

    题目描述: 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字.例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7 ...

  6. 剑指offer【04】- 重建二叉树(java)

    题目:重建二叉树 考点:树 题目描述:输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字.例如输入前序遍历序列{1,2,4,7,3,5,6, ...

  7. 剑指offer(4)重建二叉树

    题目描述 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字.例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7, ...

  8. 【剑指offer】 Java实现重建二叉树

    GitHub上的代码链接 /** * @Author: DaleyZou * @Description: 重建二叉树 * 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树. * 假设输入的前序 ...

  9. 【剑指Offer】4、重建二叉树

      题目描述:   输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字.例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列 ...

随机推荐

  1. NIO(三):Selector选择器

    一.堵塞式与非堵塞式 在传统IO中,将数据由当前线程从客户端传入服务端,由服务端的内核进行判断传过来的数据是否合法,内核中是否存在数据. 如果不存在数据 ,并且数据并不合法,当前线程将会堵塞等待.当前 ...

  2. Spring Boot Logback 默认配置

    Spring Boot Logback 默认配置 标签(空格分隔): Spring Boot Intro(介绍) Spring Boot 1.5.9 默认使用的日志框架是 Logback. 生效的默认 ...

  3. redis(二)redis的主从模式和集群模式

    redis(二)redis的主从模式和集群模式 主从模式 集群模式 主从模式 redis的主从模式,指的是针对多台redis实例时候,只存在一台主服务器master,提供读写的功能,同时存在依附在这台 ...

  4. 【模式识别与机器学习】——PCA主成分分析

    基本思想 其基本思想就是设法提取数据的主成分(或者说是主要信息),然后摒弃冗余信息(或次要信息),从而达到压缩的目的.本文将从更深的层次上讨论PCA的原理,以及Kernel化的PCA. 引子 首先我们 ...

  5. PyUsb的使用记录--window中

    import usb.core import usb.util # find our device dev = usb.core.find(idVendor=0x03EB, idProduct=0x2 ...

  6. 题解 UVA10457

    题目大意:另s = 路径上的最大边权减最小边权,求u到v上的一条路径,使其s最小,输出这个s. 很容易想到枚举最小边然后跑最小瓶颈路. so,如何跑最小瓶颈路? 利用Kruskal,因为树上两点路径唯 ...

  7. AdblockPlus自定义屏蔽广告

    AdblockPlus自定义屏蔽广告我推荐使用两种方法: 1. 使用CSS选择器 2. 使用样式选择器 屏蔽广告中,重要的一个问题就是识别广告. 我们要自己编写屏蔽就得将广告选出来,告诉Adblock ...

  8. Python3 执行JS出现JSON未定义问题

    two = function(e) { var t = e.data; e.url.match(/(https?:)?(\/\/)([^/]*)/) || (e.url = "https:/ ...

  9. CentOS 7.3安装指南

    下载CentOs 7.3 1.ISO 镜像启动完成后,你机器上会显示如下首屏.在菜单中选择 “Install CentOS 7”并按下回车继续. 2.在安装镜像加载到内存完成后,会显示一个欢迎页面.选 ...

  10. Spring Security拦截器加载流程分析--练气中期

    写在前面 上回我们讲了spring security整合spring springmvc的流程,并且知道了spring security是通过过滤器链来进行认证授权操作的.今天我们来分析一下sprin ...