爬楼梯

点击标题可跳转到官网进行查看

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

示例 2:

输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶

解题思路:

通过举例可以发现,上到n阶的方法数等于“n-1”+“n-2”方法数之和,知道这个规律就可以轻松的写出代码

实现代码:

 1 package easy;
2 class SolutionCliSta{
3 public int climbStairs(int n) {
4 if(n > 0){
5 int [] dp = new int [n + 2];
6 dp[1] = 1;
7 dp[2] = 2;
8 for (int i =3; i < n + 1; i ++){
9 dp[i] = dp [i - 1] + dp[i - 2];
10 }
11 return dp[n];
12 }
13 return 0;
14 }
15 }
16 public class ClimbingStairs {
17 public static void main(String[] args) {
18 SolutionCliSta solution = new SolutionCliSta();
19 System.out.println(solution.climbStairs(0));
20 }
21 }

70.LeetCode爬楼梯的更多相关文章

  1. 水leetcode 爬楼梯

    public class Solution { public int climbStairs(int n) { if(n==1) return 1; if(n==2) return 2; int pr ...

  2. [LeetCode] 70. Climbing Stairs 爬楼梯问题

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

  3. LeetCode 70. 爬楼梯(Climbing Stairs)

    70. 爬楼梯 70. Climbing Stairs 题目描述 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意: 给定 ...

  4. Leetcode#70. Climbing Stairs(爬楼梯)

    题目描述 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解 ...

  5. LeetCode 70 - 爬楼梯 - [递推+滚动优化]

    假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2输出: 2解释: 有两种方 ...

  6. LeetCode(70): 爬楼梯

    Easy! 题目描述: 假设你正在爬楼梯.需要 n 步你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 ...

  7. Leetcode 70.爬楼梯 By Python

    假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解释: 有两 ...

  8. 力扣(LeetCode)70. 爬楼梯

    假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解释: 有两 ...

  9. LeetCode第70题:爬楼梯

    问题描述 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解 ...

随机推荐

  1. P5327 [ZJOI2019]语言

    一边写草稿一边做题吧.要看题解的往下翻,或者是旁边的导航跳一下. 草稿 因为可以开展贸易活动的条件是存在一种通用语 \(L\) 满足 \(u_i\) 到 \(v_i\) 的最短路径上都会 \(L\) ...

  2. 7、Spring Cloud Hystrix

    1.Spring Cloud Hystrix简介 (1).分布式问题 复杂分布式体系结构中的应用程序有数十个依赖关系,每个依赖关系在某些时候将不可避免地失败. 多个微服务之间调用的时候,假设微服务A调 ...

  3. 职场中究竟什么是ownership,你是一个有ownership的人吗?

    在互联网行业,我们经常用一个标准去评价一个人,这个标准就是ownership.一个有ownership的员工往往会被认为是出色的,被委以重任,从此升职加薪.而一个被打上了没有ownership的人,往 ...

  4. Spring Session解决Session共享

    1. 分布式Session共享   在分布式集群部署环境下,使用Session存储用户信息,往往出现Session不能共享问题.   例如:服务集群部署后,分为服务A和服务B,当用户登录时负载到服务A ...

  5. 推荐系统实践 0x10 Deep Crossing

    这一篇,我们将介绍微软BING AD团队提出的Deep Crossing模型,用来解决大规模特征组合问题的模型,这些特征可以是稠密的,也可以是稀疏的,从而避免了人工进行特征组合,并使用了当年提出的残差 ...

  6. WIN7环境下配置vscode c++环境

    目录 安装vscode 添加中文环境支持 添加c++支持 配置c++环境 安装MinGW 配置MinGW环境变量 配置vscode launch文件配置 task文件配置 可能出现的问题 安装vsco ...

  7. SpringBoot从入门到精通教程(二)

    SpringBoot 是为了简化 Spring 应用的创建.运行.调试.部署等一系列问题而诞生的产物,自动装配的特性让我们可以更好的关注业务本身而不是外部的XML配置,我们只需遵循规范,引入相关的依赖 ...

  8. EF Core 封装方法Expression<Func<TObject, bool>>与Func<TObject, bool>区别

    unc<TObject, bool>是委托(delegate) Expression<Func<TObject, bool>>是表达式 Expression编译后就 ...

  9. matplotlib学习日记(十)-共享绘图区域的坐标轴

    (1)共享单一绘图区域的坐标轴 ''' 上一讲介绍了画布的划分,有时候想将多张图放在同一个绘图区域, 不想在每个绘图区域只绘制一幅图形,这时候借助共享坐标轴的方法实现在一个绘图区 绘制多幅图形的目的. ...

  10. 用git上传项目到GitHub或者码云全过程

    用git上传项目到GitHub或者码云全过程 1. 会生成一个隐藏文件夹".git".这是一个不可删文件,因为暂存区和历史区还有一些其他的信息都在这里,删掉就不是一个完整的仓库了 ...