题面

luogu

Codeforces

题目大意:

  • 给一个长度为\(n\)的序列,求两个不相交的子集长度之和最大是多少,能放入同一子集的条件是首先顺序不能变,然后每一个相邻的要么相差\(1\)或者相差\(7\)的倍数。

  • \(n<=5000\)

题解

\(dp:\)

\(f[i][j]\)表示第一序列到了第\(i\)位,第二个序列到了第\(j\)位,符合条件的长度之和最大

显然, \(f[i][j] == f[j][i]\)

那么我们可以只考虑\(i<j\)

暴力转移是\(O(n^3)\)

显然不行

注意 相邻要么相差\(1\),要么相差\(7\)的倍数

对于相差\(1\), 开一个桶记录\(max\)

相差\(7\),就是 模\(7\) 同余

也开一个桶

这样复杂度就是\(O(n^2)\)

Code

#include<bits/stdc++.h>

#define LL long long
#define RG register using namespace std;
template<class T> inline void read(T &x) {
x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-48, c = getchar();
x = f ? -x : x;
return ;
}
template<class T> inline void write(T x) {
if (!x) {putchar(48);return ;}
if (x < 0) x = -x, putchar('-');
int len = -1, z[20]; while (x > 0) z[++len] = x%10, x /= 10;
for (RG int i = len; i >= 0; i--) putchar(z[i]+48);return ;
}
const int N = 5010, M = 100010;
int f[N][N], a[N];
int pre[M], mod[10];
int main() {
int n, ans = 0; read(n);
for (int i = 1; i <= n; i++) read(a[i]);
for (int i = 0; i <= n; i++) {
memset(mod, 0, sizeof(mod));
memset(pre, 0, sizeof(pre));
for (int j = 1; j < i; j++) {
pre[a[j]] = max(pre[a[j]], f[i][j]);
mod[a[j] % 7] = max(mod[a[j] % 7], f[i][j]);
}
for (int j = i+1; j <= n; j++) {
f[i][j] = max(pre[a[j] - 1], pre[a[j] + 1]) + 1;
f[i][j] = max(f[i][j], f[i][0] + 1);
f[i][j] = max(f[i][j], mod[a[j] % 7] + 1);
f[j][i] = f[i][j];
pre[a[j]] = max(pre[a[j]], f[i][j]);
mod[a[j] % 7] = max(mod[a[j] % 7], f[i][j]);
ans = max(ans, f[i][j]);
}
}
printf("%d\n", ans);
return 0;
}

CF813D Two Melodies(dp)的更多相关文章

  1. 【CF813D】Two Melodies

    [CF813D]Two Melodies 题面 洛谷 题解 $dp$: 设$f[i][j]$表示第一个集合以$i$结尾.第二个集合以$j$结尾的合法长度之和最大是多少 明显有$f[i][j]=f[j] ...

  2. Two Melodies CodeForces - 813D (DP,技巧)

    https://codeforces.com/problemset/problem/813/D dp[i][j] = 一条链以i结尾, 另一条链以j结尾的最大值 关键要保证转移时两条链不能相交 #in ...

  3. codeforces 813 D. Two Melodies(dp)

    题目链接:http://codeforces.com/contest/813/problem/D 题意:求两个不相交的子集长度之和最大是多少,能放入同一子集的条件是首先顺序不能变,然后每一个相邻的要么 ...

  4. BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 4142  Solved: 1964[Submit][Statu ...

  5. 2013 Asia Changsha Regional Contest---Josephina and RPG(DP)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4800 Problem Description A role-playing game (RPG and ...

  6. AEAI DP V3.7.0 发布,开源综合应用开发平台

    1  升级说明 AEAI DP 3.7版本是AEAI DP一个里程碑版本,基于JDK1.7开发,在本版本中新增支持Rest服务开发机制(默认支持WebService服务开发机制),且支持WS服务.RS ...

  7. AEAI DP V3.6.0 升级说明,开源综合应用开发平台

    AEAI DP综合应用开发平台是一款扩展开发工具,专门用于开发MIS类的Java Web应用,本次发版的AEAI DP_v3.6.0版本为AEAI DP _v3.5.0版本的升级版本,该产品现已开源并 ...

  8. BZOJ 1597: [Usaco2008 Mar]土地购买 [斜率优化DP]

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4026  Solved: 1473[Submit] ...

  9. [斜率优化DP]【学习笔记】【更新中】

    参考资料: 1.元旦集训的课件已经很好了 http://files.cnblogs.com/files/candy99/dp.pdf 2.http://www.cnblogs.com/MashiroS ...

随机推荐

  1. EOJ-3300 奇数统计(高维前缀和)

    题目链接: https://acm.ecnu.edu.cn/problem/3300/ 题目大意: 给n个数,求在n个数中选两个数(可重复),使得这两个数的组合数是奇数,求总共有多少种取法. 解题思路 ...

  2. DataGrid添加滚动条

    DataGrid中是没有滚动条的,要添加滚动条需要借助<div>层 <div style="overflow:auto;width:95%;height:95%" ...

  3. Word中高效输入公式:内嵌公式和Mathtype

    Word中高效输入公式:内嵌公式和Mathtype 前言:对于理工科学生而言,公式输入必不可缺.LaTeX相比Word,在公式输入及排版方面更强大.但是对于轻量级的任务,用Word而言更加轻便(起码不 ...

  4. composer的基本运用

    Composer -- PHP依赖管理的新时代 一.简介 说到composer,绝大多数的开发人员都会用到.composer是一个什么工具呢? composer 是 PHP 用来管理依赖(depend ...

  5. Truncated class file 问题的解决

    替换class 文件之后出现了 Truncated class file  问题,查找原因,可能是文件损坏,清理缓存可以解决 解决办法: 把tomcat的work目录直接删掉,让他重新启动.rm -r ...

  6. HTML5视频播放插件 video.js介绍

    video.js是一款很流行的html5视频播放插件.很适合在移动端播放视频(比如微信网页),功能强大,且支持降级到flash,兼容ie8.官网:http://videojs.com/    git& ...

  7. 一点一点看JDK源码(三)java.util.ArrayList 前偏

    一点一点看JDK源码(三)java.util.ArrayList liuyuhang原创,未经允许禁止转载 本文举例使用的是JDK8的API 目录:一点一点看JDK源码(〇) 1.综述 ArrayLi ...

  8. Android 中Dialog的使用

    本文是参考ProAndroid的第10章Working with Dialogs的内容,在合适的地方添加了作者自己的一些见解最终成文. Android 中的对话框是一个展示在当前窗口上的小一号的窗口, ...

  9. iOS视频播放(AVFoundation)

    iOS视频播放(AVFoundation) 关于iOS平台的音视频处理,苹果官方提供了OC和swift接口的AVFoundation框架,可以进行各种音频播放和剪辑,底层实现使用了GPU加速,编解码效 ...

  10. 为什么我们需要DTO?

    最近在写代码时突然产生了这个疑惑,我们为什么需要DTO进行数据传输呢? 要了解DTO首先我们要知道什么是DAO,DAO就是数据库的一个数据模型,是一个类文件里面存储着数据库的字段及其getter&am ...