Description

给定一个01矩阵,其中你可以在0的位置放置攻击装置。每一个攻击装置(x,y)都可以按照“日”字攻击其周围的 8个位置(x-1,y-2),(x-2,y-1),(x+1,y-2),(x+2,y-1),(x-1,y+2),(x-2,y+1), (x+1,y+2),(x+2,y+1)

求在装置互不攻击的情况下,最多可以放置多少个装置。

Input

第一行一个整数N,表示矩阵大小为N*N。接下来N行每一行一个长度N的01串,表示矩阵。

Output

一个整数,表示在装置互不攻击的情况下最多可以放置多少个装置。

Sample Input

3

010

000

100

Sample Output

4

HINT

100%数据 N<=200

Solution

一个点向所有它能打到的点连边

由于日字步两点的和的奇偶性一定不同,所以图可以二分

要求的就是最大独立集,可用点数-最大匹配

所以做一遍Dinic就行了

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=200+10,inf=0x3f3f3f3f;
int e=1,n,to[MAXN*MAXN*16],nex[MAXN*MAXN*16],cap[MAXN*MAXN*16],beg[MAXN*MAXN],level[MAXN*MAXN],s,t,dr[4][2]={{1,-2},{2,-1},{1,2},{2,1}},pres[MAXN*MAXN],prex[MAXN*MAXN],cnt,cur[MAXN*MAXN];
char str[MAXN];
std::queue<int> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline int id(int x,int y)
{
return (x-1)*n+y;
}
inline void insert(int x,int y,int z)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
cap[e]=z;
to[++e]=x;
nex[e]=beg[y];
beg[y]=e;
cap[e]=0;
}
inline void match(int x,int y)
{
for(register int i=0;i<4;++i)
{
int dx=x+dr[i][0],dy=y+dr[i][1];
if(dx<1||dx>n||dy<1||dy>n)continue;
if((x+y)&1)insert(id(x,y),id(dx,dy),1);
else insert(id(dx,dy),id(x,y),1);
}
}
inline bool bfs()
{
memset(level,0,sizeof(level));
level[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
for(register int i=beg[x];i;i=nex[i])
if(!level[to[i]]&&cap[i])level[to[i]]=level[x]+1,q.push(to[i]);
}
return level[t];
}
inline int dfs(int x,int maxflow)
{
if(!maxflow||x==t)return maxflow;
int res=0,f;
for(register int &i=cur[x];i;i=nex[i])
if(cap[i]&&level[to[i]]==level[x]+1)
{
f=dfs(to[i],min(maxflow,cap[i]));
cap[i]-=f;
cap[i^1]+=f;
maxflow-=f;
res+=f;
if(!maxflow)break;
}
return res;
}
inline int Dinic()
{
int res=0;
while(bfs())memcpy(cur,beg,sizeof(cur)),res+=dfs(s,inf);
return res;
}
int main()
{
read(n);
s=n*n+1,t=s+1;
for(register int i=1;i<=n;++i)
{
scanf("%s",str+1);
for(register int j=1;j<=n;++j)
if(str[j]=='0')
{
cnt++;
match(i,j);
if((i+j)&1)insert(s,id(i,j),1);
else insert(id(i,j),t,1);
}
}
write(cnt-Dinic(),' ');
return 0;
}

【刷题】BZOJ 3175 [Tjoi2013]攻击装置的更多相关文章

  1. BZOJ 3175: [Tjoi2013]攻击装置( 匈牙利 )

    黑白染成二分图, 然后不能同时选的就连边, 最大匹配数为m, t为不能放的数目, 则题目所求最大点独立集为 n*n-m-t -------------------------------------- ...

  2. BZOJ 3175: [Tjoi2013]攻击装置

    捉水题真是捉上瘾了TUT Description 给定一个01矩阵,其中你可以在0的位置放置攻击装置.每一个攻击装置(x,y)都可以按照“日”字攻击其周围的 8个位置(x-1,y-2),(x-2,y- ...

  3. 【BZOJ 3175】 3175: [Tjoi2013]攻击装置(二分图匹配)

    3175: [Tjoi2013]攻击装置 Description 给定一个01矩阵,其中你可以在0的位置放置攻击装置.每一个攻击装置(x,y)都可以按照“日”字攻击其周围的 8个位置(x-1,y-2) ...

  4. BZOJ3175: [Tjoi2013]攻击装置

    题解: 最大点独立集...好像水过头了... 不过发现我二分图好像忘完了!!! 代码: #include<cstdio> #include<cstdlib> #include& ...

  5. 【BZOJ4808/3175】马/[Tjoi2013]攻击装置 最小割

    [BZOJ4808]马 Description 众所周知,马后炮是中国象棋中很厉害的一招必杀技."马走日字".本来,如果在要去的方向有别的棋子挡住(俗称"蹩马腿" ...

  6. 【洛谷】4304:[TJOI2013]攻击装置【最大点独立集】【二分图】2172: [国家集训队]部落战争【二分图/网络流】【最小路径覆盖】

    P4304 [TJOI2013]攻击装置 题目描述 给定一个01矩阵,其中你可以在0的位置放置攻击装置. 每一个攻击装置(x,y)都可以按照“日”字攻击其周围的8个位置(x-1,y-2),(x-2,y ...

  7. BZOJ_3175_[Tjoi2013]攻击装置_二分图匹配

    BZOJ_3175_[Tjoi2013]攻击装置_二分图匹配Description 给定一个01矩阵,其中你可以在0的位置放置攻击装置.每一个攻击装置(x,y)都可以按照“日”字攻击其周围的 8个位置 ...

  8. bzoj4808: 马 & bzoj3175: [Tjoi2013]攻击装置 (黑白染色+最小割)

    bzoj4808: 马 & bzoj3175: [Tjoi2013]攻击装置 题目:传送门 简要题意: 和n皇后问题差不多,但是这里是每个棋子走日子,而且有些格子不能放棋子.求最多能放多少个棋 ...

  9. BZOJ3175 Tjoi2013 攻击装置(二分图匹配)

    传送门 Description 给定一个01矩阵,其中你可以在0的位置放置攻击装置.每一个攻击装置(x,y)都可以按照"日"字攻击其周围的 8个位置(x-1,y-2),(x-2,y ...

随机推荐

  1. Mac OS下Android Studio:/dev/kvm not found

    在配置模拟器时出现该报错,在网上找了很多教程都没能解决,当然可能是这些教程并不适用于我.总的来说,还是要“对症下药”! 解决方法如下: 点击“系统偏好设置”-“安全性与隐私”,然后会在“通用”这个界面 ...

  2. Java实现邮件发送

      概述 Spring Boot下面整合了邮件服务器,使用Spring Boot能够轻松实现邮件发送:整理下最近使用Spring Boot发送邮件和注意事项: Maven包依赖 <depende ...

  3. 用wireshark查看 tcpdump 抓取的mysql交互数据

    用tcpdump  抓取 mysql客户端与服务器端的交互 1开启tcpdump tcpdump -i eth0 -s 3000 port 3306 -w ~/sql.pcap 先故意输入一个错误的密 ...

  4. [JSON].result()

    语法:[JSON].result() 返回:[True | False] 说明:用json字符串创建JSON实例时,如果该json字符串不是合法的json格式,会创建一个空的json实例.但是我们如果 ...

  5. 【shell 练习2】产生随机数的方法总结

    一.产生随机数 ()RANDOM 产生随机数 [root@localhost ~]# echo $RANDOM [root@localhost ~]# )) #想要生成八个随机数,随便加一个八位的数字 ...

  6. Java标签实现分页

    Java实现标签分页 最近为了开发一个网站,里面要用分页功能,但是之前很少自己写分页标签,又不想用现成框架.所以自己参考了些资料,写了个分页例子测试了一下. 代码主要分为三个类: PageTag 分页 ...

  7. Fluent Python: @property

    Fluent Python 9.6节讲到hashable Class, 为了使Vector2d类可散列,有以下条件: (1)实现__hash__方法 (2)实现__eq__方法 (3)让Vector2 ...

  8. Python3 数据类型-集合

    在Python中集合set是基本数据类型的一种,它有可变集合(set)和不可变集合(frozenset)两种.创建集合set.集合set添加.集合删除.交集.并集.差集的操作都是非常实用的方法. 集合 ...

  9. POJ 3845 Fractal(计算几何の旋转缩放)

    Description Fractals are really cool mathematical objects. They have a lot of interesting properties ...

  10. js经典试题之ES6

    js经典试题之ES6 1:在ECMAScript6 中,Promise的状态 答案:pending  resolved(fulfilled) rejected 解析: Promise对象只有三种状态: ...