题目大意:有$n$个点,问有多少种连成生成树的方案。

题解:根据$prufer$序列可得,$n$个点的生成树有$n^{n-2}$个,每种生成树有$(n-1)!$种生成方案,所以答案是$n^{n-2}(n-1)!$

卡点:

C++ Code:

#include <cstdio>
const int mod = 9999991;
int n, sum;
inline int pw(int base, int p) {
static int res;
for (res = 1; p; p >>= 1, base = static_cast<long long> (base) * base % mod) if (p & 1) res = static_cast<long long> (res) * base % mod;
return res;
}
int main() {
scanf("%d", &n);
sum = pw(n, n - 2);
for (int i = 2; i < n; ++i) sum = static_cast<long long> (sum) * i % mod;
printf("%d\n", sum);
return 0;
}

[洛谷P4430]小猴打架的更多相关文章

  1. 洛谷 P4430 小猴打架

    洛谷 P4430 小猴打架 题目描述 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打 ...

  2. P4430 小猴打架、P4981 父子

    prufer编码 当然你也可以理解为 Cayley 公式,其实这个公式就是prufer编码经过一步就能推出的 P4430 小猴打架 P4981 父子 这俩题差不多 先说父子,很显然题目就是让你求\(n ...

  3. P4430 小猴打架

    P4430 小猴打架 题目意思就是让你求,在网格图中(任意两点都有边)的生成树的个数(边的顺序不同也算不同的方案). 首先我们考虑一个生成树,由于一定有n-1条边,单单考虑添加边的顺序,根据乘法原理, ...

  4. 洛谷-笨小猴-NOIP2008提高组复赛

    题目描述 Description 笨小猴的词汇量很小,所以每次做英语选择题的时候都很头疼.但是他找到了一种方法,经试验证明,用这种方法去选择选项的时候选对的几率非常大! 这种方法的具体描述如下:假设m ...

  5. luogu P4430 小猴打架(prufer编码与Cayley定理)

    题意 n个点问有多少种有顺序的连接方法把这些点连成一棵树. (n<=106) 题解 了解有关prufer编码与Cayley定理的知识. 可知带标号的无根树有nn-2种.然后n-1条边有(n-1) ...

  6. 洛谷P1120 小木棍

    洛谷1120 小木棍 题目描述 乔治有一些同样长的小木棍,他把这些木棍随意砍成几段,直到每段的长都不超过50.     现在,他想把小木棍拼接成原来的样子,但是却忘记了自己开始时有多少根木棍和它们的长 ...

  7. 洛谷1373 小a和uim之大逃离

    洛谷1373 小a和uim之大逃离 本题地址:http://www.luogu.org/problem/show?pid=1373 题目背景 小a和uim来到雨林中探险.突然一阵北风吹来,一片乌云从北 ...

  8. BZOJ1430: 小猴打架

    1430: 小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 328  Solved: 234[Submit][Status] Descripti ...

  9. bzoj 1430: 小猴打架 -- prufer编码

    1430: 小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MB Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是 ...

随机推荐

  1. ShareEntryActivity java.lang.ClassNotFoundException | Android类找不到问题

    错误堆栈: Process: com.mci.smagazine, PID: 23265 java.lang.RuntimeException: Unable to instantiate activ ...

  2. Java基础知识总结一

    1.何为编程? 编程就是让计算机为解决某个问题而使用某种程序设计语言编写程序代码,并最终得到结果的过程. 为了使计算机能够理解人的意图,人类就必须要将需解决的问题的思路.方法.和手段通过计算机能够理解 ...

  3. java 浅复制 深复制

    1.浅复制 只是复制引用,对引用的操作会影响之前复制的对象. 2.深复制 复制一个完全独立的对象,复制对象与被复制对象相互之间不影响. 只是概念性东西....

  4. Qt 5 最新信号和槽连接方式以及Lambda表达式

    最近学习Qt,发现新大陆,这里做下记录. 主要内容就是原始Qt4的信号槽连接方式,以及Qt5新版的连接方式,还有件事简单演示一下lambda表达式的使用方式 代码如下 /* * 作者:张建伟 * 时间 ...

  5. 180713-Spring之借助Redis设计访问计数器之扩展篇

    之前写了一篇博文,简单的介绍了下如何利用Redis配合Spring搭建一个web的访问计数器,之前的内容比较初级,现在考虑对其进行扩展,新增访问者记录 记录当前站点的总访问人数(根据Ip或则设备号) ...

  6. 新的征程 in ZJU

    争取考上了心仪的学校 并进入了心仪的实验室 但是对我来说,未来将是更多的挑战 首先我觉得我学习能力还是不足,无法做到一天的高效率学习 实验室的方向是可视化,我觉得这个是个非常复杂的方向 数学,pyth ...

  7. Java开发工程师(Web方向) - 04.Spring框架 - 期末测试

    Spring框架客观题 Spring框架编程题 http://blog.csdn.net/sinoacc/article/details/51702458 1 (25分) 假设有如下数据表: crea ...

  8. 【swiper】 滑块组件说明

    swiper 滑块视图容器,其原型如下: <swiper indicator-dots="[Boolean]" indicator-color="[Color]&q ...

  9. 平衡的括号 (Parentheses Balance UVA - 673)

    题目描述: 原题:https://vjudge.net/problem/UVA-673 题目思路: 1.水题 2.栈+模拟 3.坑在有空串 AC代码 #include <iostream> ...

  10. 【转】《王者荣耀》技术总监复盘回炉历程:没跨过这三座大山,就是另一款MOBA霸占市场了

    如今已经大获市场成功的<王者荣耀>一直是业内各方关注的对象,而我们也知道这款产品在成为国民级游戏之前,也遇到过一段鲜有人知的调优期.也就是在2015年8月18号正式不删档测试版本推出之后, ...