copy:

  Dilworth定理:DAG的最小链覆盖=最大点独立集

  最小链覆盖指选出最少的链(可以重复)使得每个点都在至少一条链中

  最大点独立集指最大的集合使集合中任意两点不可达

  此题中独立的定义即是两点满足一个在左下一个在右上(或在同一格)。于是只需要找一条从左下到右上权值和最大的路径。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 1010
int T,n,m,a[N][N],f[N][N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3997.in","r",stdin);
freopen("bzoj3997.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
while (T--)
{
n=read(),m=read();
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
a[i][j]=read();
for (int i=;i<=m;i++) f[n+][i]=;
for (int i=n;i>=;i--)
for (int j=;j<=m;j++)
f[i][j]=max(a[i][j]+f[i+][j-],max(f[i+][j],f[i][j-]));
cout<<f[][m]<<endl;
}
return ;
}

BZOJ3997 TJOI2015组合数学(动态规划)的更多相关文章

  1. BZOJ3997: [TJOI2015]组合数学(网络流)

    3997: [TJOI2015]组合数学 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 405  Solved: 284[Submit][Status ...

  2. bzoj3997[TJOI2015]组合数学

    http://www.lydsy.com/JudgeOnline/problem.php?id=3997 偏序集,看上一篇随笔. 我们要求最少路径覆盖,可以等价于求最大独立集. 我们要找到一个权值和最 ...

  3. [BZOJ3997][TJOI2015]组合数学(Dilworth定理+DP)

    题目名字是什么就不能往那方面想. 每个点拆成a[i][j]个,问题变为DAG最小路径覆盖,由Dilworth定理转成最长反链. 使用Dilworth定理的时候要注意那些点之间有边,这里任意一个点和其右 ...

  4. bzoj3997[TJOI2015]组合数学(求最长反链的dp)

    组合数学 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走 ...

  5. bzoj千题计划298:bzoj3997: [TJOI2015]组合数学

    http://www.lydsy.com/JudgeOnline/problem.php?id=3997 最小链覆盖=最长反链长度 所以题目等价于寻找一条从右上角到左下角的最长路 #include&l ...

  6. BZOJ3997:[TJOI2015]组合数学(DP,Dilworth定理)

    Description 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一 ...

  7. BZOJ3997 [TJOI2015]组合数学 【Dilworth定理】

    题目 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走多少 ...

  8. 【BZOJ3997】[TJOI2015]组合数学(动态规划)

    [BZOJ3997][TJOI2015]组合数学(动态规划) 题面 BZOJ 洛谷 题解 相当妙的一道题目.不看题解我只会暴力网络流 先考虑要求的是一个什么东西,我们把每个点按照\(a[i][j]\) ...

  9. 【BZOJ3997】[TJOI2015]组合数学 最长反链

    [BZOJ3997][TJOI2015]组合数学 Description 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格 ...

随机推荐

  1. FPGA代码一位半加器入门-第2篇

    1. 代码比较简单,总结起来是用逻辑运算替代了数学运算加减,应该是因为这样的逻辑资源耗费的少.S是A+B的个位,CO是A+B的进位. module half_adder(A,B,S,CO); inpu ...

  2. 使用conlleval.pl对CRF测试结果进行评价的方法

    基于CRF做命名实体识别系列 用CRF做命名实体识别(一) 用CRF做命名实体识别(二) 用CRF做命名实体识别(三) 评测 用CRF做完命名实体识别我们测试之后得到的结果就是预测的标签,并不能直接得 ...

  3. andriod学习二 设置开发环境

    1.官方环境搭建步骤     http://developer.android.com/sdk/installing/index.html         包括:下载JDK6,Eclipse 3.6, ...

  4. 「日常训练」Duff in the Army (Codeforces Round #326 Div.2 E)

    题意(CodeForces 588E) 给定一棵\(n\)个点的树,给定\(m\)个人(\(m\le n\))在哪个点上的信息,每个点可以有任意个人:然后给\(q\)个询问,每次问\(u\)到\(v\ ...

  5. 180611-Spring之RedisTemplate配置与使用

        logo 文章链接:https://liuyueyi.github.io/hexblog/2018/06/11/180611-Spring之RedisTemplate配置与使用/ Spring ...

  6. [JSON].valueOf( keyPath )

    语法:[JSON].valueOf( keyPath ) 返回:[任意类型 | null] 说明:获取键名路径原值,它保留原始值的类型 示例: b = sysFile.binary("tes ...

  7. OpenMPI源码剖析4:rte.h 头文件的说明信息

    上一篇文章中说道,我们在 rte.h 中发现了有价值的说明: 我们一块一块来分析,首先看到第一块,关于 Process name Object: * (a) Process name objects ...

  8. Matlab 图象操作函数讲解

    h = imrect;pos = getPosition(h); 这个函数用来获取图象上特定区域的坐标,其中pos的返回值中有四个参数[xmin,ymin,width,height],特定区域的左上角 ...

  9. Python3 Tkinter-Label

    1.创建 from tkinter import * root=Tk() root.title('Hello tkinter!') root.mainloop() 2.使用内置位图 from tkin ...

  10. Linux下误删文件恢复办法

    恢复删除的文件 当误删除文件时,如果还有程序对此文件进行操作,那么可以通过lsof 命令恢复文件内容. 举例: 误删粗messages日志文件 [root@cdn ~]# cat /var/log/m ...