【题解】Atcoder ARC#90 F-Number of Digits
Atcoder刷不动的每日一题...
首先注意到一个事实:随着 \(l, r\) 的增大,\(f(r) - f(l)\) 会越来越小。考虑暴力处理出小数据的情况,我们可以发现对于左端点 \(f(l) <= 7\) 的情况下,右端点的最大限度为 \(\frac{10^8}{8} + 10^7\) 。这个范围并不大,可以直接用 two-pointer 处理出来。
那么这部分的数据和后面的数据有什么不同呢? 当 \(f(l) > 7\) 的时候,\(f(r) - f(l) <= 1\)。那么设 \(l = f(l)\),我们有:
\( x * l + y * (l + 1) = S \)
令 \( t = x + y \)
原式等于 \( t * l + y = S \);
我们令 \(x + y > y\) ,即 \( x != 0 \),那么最后一个式子实际上表达的是 \( y = S \ mod \ t \)。也就是说,对于任何的一个确定的 \(t\),(当 \(l\) 的范围 \(> 7\))我们都可以找到唯一对应的 \(x, y\) 与之对应。那么我们就可以扫一遍所有的 \(t\)以求得答案。注意当 \( y = 0 \) 时,对答案的贡献为这个数字范围内所有长为 \(t\) 的区间。
#include <bits/stdc++.h>
using namespace std;
#define maxn 23000000
#define int long long
#define mod 1000000007
int digit[maxn], ans, S; int read()
{
int x = , k = ;
char c; c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} int Qpow(int times)
{
int x = , base = ;
for(; times; times >>= , x = x * x % mod)
if(times & ) base = base * x % mod;
return base;
} void Up(int &x, int y) { x = (x + y) % mod; }
signed main()
{
S = read(); int lim = S / , now = ;
for(int i = ; i < maxn; i ++) digit[i] = digit[i / ] + ;
for(int i = , now = , tem = ; i < 1e7; i ++)
{
while(tem < S) { tem += digit[now]; now ++; }
if(tem == S) { ans += ; if(ans >= mod) ans -= mod; }
tem -= digit[i];
}
for(int i = ; i <= lim; i ++)
{
if(!(S % i))
{
int l = S / i, sum = Qpow(l - ) * % mod;
Up(ans, (sum - i + + mod) % mod);
}
else
{
int l = (S - S % i) / i;
ans += ; if(ans >= mod) ans -= mod;
}
}
printf("%lld\n", ans);
return ;
}
【题解】Atcoder ARC#90 F-Number of Digits的更多相关文章
- AtCoder Regular Contest 090 F - Number of Digits
题目链接 Description For a positive integer \(n\), let us define \(f(n)\) as the number of digits in bas ...
- 【题解】 AtCoder ARC 076 F - Exhausted? (霍尔定理+线段树)
题面 题目大意: 给你\(m\)张椅子,排成一行,告诉你\(n\)个人,每个人可以坐的座位为\([1,l]\bigcup[r,m]\),为了让所有人坐下,问至少还要加多少张椅子. Solution: ...
- 【题解】Atcoder ARC#90 E-Avoiding Collision
自己做出来固然开心,但是越发感觉到自己写题的确是很慢很慢了……往往有很多的细节反反复复的考虑才能确定,还要加油呀~ 这道题目的突破口在于正难则反.直接求有多少不相交的不好求,我们转而求出所有相交的.我 ...
- [题解] Atcoder ARC 142 D Deterministic Placing 结论,DP
题目 (可能有点长,但是请耐心看完,个人认为比官方题解好懂:P) 首先需要注意,对于任意节点i上的一个棋子,如果在一种走法中它走到了节点j,另一种走法中它走到了节点k,那么这两种走法进行完后,棋子占据 ...
- [题解] Atcoder ARC 142 E Pairing Wizards 最小割
题目 建图很妙,不会. 考虑每一对要求合法的巫师(x,y),他们两个的\(a\)必须都大于\(min(b_x,b_y)\).所以在输入的时候,如果\(a_x\)或者\(a_y\)小于\(min(b_x ...
- [题解] Atcoder AGC 005 F Many Easy Problems NTT,组合数学
题目 观察当k固定时答案是什么.先假设每个节点对答案的贡献都是\(\binom{n}{k}\),然后再减掉某个点没有贡献的选点方案数.对于一个节点i,它没有贡献的方案数显然就是所有k个节点都选在i连出 ...
- [atcoder contest 010] F - Tree Game
[atcoder contest 010] F - Tree Game Time limit : 2sec / Memory limit : 256MB Score : 1600 points Pro ...
- Find the smallest number whose digits multiply to a given number n
Given a number ‘n’, find the smallest number ‘p’ such that if we multiply all digits of ‘p’, we get ...
- 【leetcode】1295. Find Numbers with Even Number of Digits
题目如下: Given an array nums of integers, return how many of them contain an even number of digits. Exa ...
随机推荐
- dubbo之main启动
一.dubbo的main启动在使用上面会简单的多,但是需要做一些简单的配置. dubbo.spring.config=classpath*:META-INF/spring/*.xml 备注:这个是默认 ...
- dubbo之基础应用
一.Dubbo是Alibaba开源的分布式服务框架,它最大的特点是按照分层的方式来架构,使用这种方式可以使各个层之间解耦合(或者最大限度地松耦合).从服务模型的角度来看,Dubbo采用的是一种非常简单 ...
- C#函数库
//读取文本文件并返回内容不同的那一行 public static String different(String sOldFile, String sNewFile) ...
- Java并发编程系列一:Future和CompletableFuture解析与使用
一.Future模式 Java 1.5开始,提供了Callable和Future,通过它们可以在任务执行完毕之后得到任务执行结果. Future接口可以构建异步应用,是多线程开发中常见的设计模式. 当 ...
- OpenSUSE 11 安装Qt5.0,失败,失败,失败,留个坑,以后来填,万一实现了呢
我又来无耻的写问题来了,这次还真的是没有解决,线留坑吧,万一以后实现了. 同样,这次也是以恶搞网友说听说想在open suse 上面安装5.0版本以后的Qt,自己折腾好几没有成功. 我一想,哎,这不是 ...
- Selenium自动化测试第二天(下)
如有任何学习问题,可以添加作者微信:lockingfree 目录 Selenium自动化测试基础 Selenium自动化测试第一天(上) Selenium自动化测试第一天(下) Selenium自动化 ...
- 第三十九篇 Python异常处理
一. 什么是异常 异常就是程序运行时发生的错误,在程序出现错误时,则会产生一个异常,若程序没有处理它,则会抛出该异常,程序的运行也随之终止,在python中,错误触发的异常如下 错误分成两种: #语法 ...
- Oracle启动与关闭数据库实例
Oracle数据库启动实例分为3个步骤: 启动实例 加载数据库 打开数据库 通用模式: STARTUP [ nomount | mount | open | force ] [resetrict] ...
- loadrunner_遇到cookie接口_3种应对方法
方法一:是调用登录接口,在调用登录后的接口 方法二:手动储存cookie,写死cookie 方法一:提前登录收集cookie,写成参数化文件 方法一,案例(就是先登录,再写登录后的接口): 注:use ...
- [SHELL]shell中的数学运算
一,expr 太麻烦,看的脑壳疼 二,使用方括号 !!!! bash shell用这种方法只支持整数运算,z shell倒是支持浮点型运算 var_1= var_2= var_3= my_var_1 ...